rust-crafting-interpreters-.../src/resolver.rs

271 lines
8.2 KiB
Rust

use std::collections::HashMap;
use crate::{
ast,
errors::{ErrorKind, SloxError, SloxResult},
tokens::Token,
};
/// Resolved variables. Pointers to the AST nodes using the variables are
/// associated with the relative depth at which the variable definition will be
/// found.
pub type ResolvedVariables = HashMap<usize, usize>;
/// Resolve all variables in a program's AST.
pub fn resolve_variables(program: &ast::ProgramNode) -> SloxResult<ResolvedVariables> {
let mut state = ResolverState::default();
program.resolve(&mut state).map(|_| state.resolved)
}
type ResolverResult = SloxResult<()>;
/// The state of the resolver.
#[derive(Default)]
struct ResolverState {
/// The stack of scopes. Each scope maps variable names to a flag that
/// indicates whether the variable has been defined or not.
scopes: Vec<HashMap<String, bool>>,
/// The result of the resolver pass.
resolved: ResolvedVariables,
}
impl ResolverState {
/// Enter a new scope.
fn begin_scope(&mut self) {
self.scopes.push(HashMap::new());
}
/// End the current scope.
fn end_scope(&mut self) {
self.scopes.pop();
}
/// Try to declare a variable. If the scope already contains a variable
/// declaration for the same name, return an error.
fn declare(&mut self, name: &Token) -> ResolverResult {
if !self.scopes.is_empty() {
let idx = self.scopes.len() - 1;
let scope = &mut self.scopes[idx];
if scope.contains_key(&name.lexeme as &str) {
return Err(SloxError::with_token(
ErrorKind::Parse,
name,
"already a variable with this name in this scope".to_owned(),
));
} else {
scope.insert(name.lexeme.clone(), false);
}
}
return Ok(());
}
/// Define a new variable.
fn define(&mut self, name: &Token) {
if !self.scopes.is_empty() {
let idx = self.scopes.len() - 1;
let top = &mut self.scopes[idx];
top.insert(name.lexeme.clone(), true);
}
}
/// Check for a variable in the current scope, if there is one.
fn check(&self, name: &str) -> Option<bool> {
if self.scopes.is_empty() {
None
} else {
let idx = self.scopes.len() - 1;
self.scopes[idx].get(name).cloned()
}
}
/// Try to resolve some access to a variable. If a local variable is found
/// matching the specified name, add it to the resolution map.
fn resolve_local(&mut self, expr_id: &usize, name: &Token) {
let mut i = self.scopes.len();
while i != 0 {
i -= 1;
if self.scopes[i].contains_key(&name.lexeme as &str) {
self.mark_resolved(expr_id, self.scopes.len() - 1 - i);
return;
}
}
}
/// Add an entry to the resolution map for an AST node.
fn mark_resolved(&mut self, expr_id: &usize, depth: usize) {
self.resolved.insert(*expr_id, depth);
}
}
/// Process a function declaration.
fn resolve_function(
rs: &mut ResolverState,
params: &[Token],
body: &Vec<ast::StmtNode>,
) -> ResolverResult {
rs.begin_scope();
for param in params {
rs.declare(param)?;
rs.define(param);
}
// Unlike the original Lox, function arguments and function bodies do
// not use the same environment.
rs.begin_scope();
let result = body.resolve(rs);
rs.end_scope();
rs.end_scope();
result
}
/// Helper trait used to visit the various AST nodes with the resolver.
trait VarResolver {
/// Try to resolve local variables under some AST node.
fn resolve(&self, rs: &mut ResolverState) -> ResolverResult;
}
impl VarResolver for ast::ProgramNode {
fn resolve(&self, rs: &mut ResolverState) -> ResolverResult {
self.0.resolve(rs)
}
}
impl VarResolver for Vec<ast::StmtNode> {
fn resolve(&self, rs: &mut ResolverState) -> ResolverResult {
for stmt in self.iter() {
stmt.resolve(rs)?;
}
Ok(())
}
}
impl VarResolver for ast::StmtNode {
fn resolve(&self, rs: &mut ResolverState) -> ResolverResult {
match self {
ast::StmtNode::Block(stmts) => {
rs.begin_scope();
let result = stmts.resolve(rs);
rs.end_scope();
result
}
ast::StmtNode::VarDecl(name, None) => {
rs.declare(name)?;
rs.define(name);
Ok(())
}
ast::StmtNode::VarDecl(name, Some(init)) => {
rs.declare(name)?;
init.resolve(rs)?;
rs.define(name);
Ok(())
}
ast::StmtNode::FunDecl { name, params, body } => {
rs.declare(name)?;
rs.define(name);
resolve_function(rs, params, body)
}
ast::StmtNode::If {
condition,
then_branch,
else_branch: None,
} => condition.resolve(rs).and_then(|_| then_branch.resolve(rs)),
ast::StmtNode::If {
condition,
then_branch,
else_branch: Some(else_branch),
} => condition
.resolve(rs)
.and_then(|_| then_branch.resolve(rs))
.and_then(|_| else_branch.resolve(rs)),
ast::StmtNode::Loop {
label: _,
condition,
body,
after_body,
} => condition
.resolve(rs)
.and_then(|_| {
if let Some(stmt) = after_body {
stmt.resolve(rs)
} else {
Ok(())
}
})
.and_then(|_| body.resolve(rs)),
ast::StmtNode::Return {
token: _,
value: None,
} => Ok(()),
ast::StmtNode::Return {
token: _,
value: Some(expr),
} => expr.resolve(rs),
ast::StmtNode::Expression(expr) => expr.resolve(rs),
ast::StmtNode::Print(expr) => expr.resolve(rs),
ast::StmtNode::LoopControl {
is_break: _,
loop_name: _,
} => Ok(()),
}
}
}
impl VarResolver for ast::ExprNode {
fn resolve(&self, rs: &mut ResolverState) -> ResolverResult {
match self {
ast::ExprNode::Variable { name, id } => {
if rs.check(&name.lexeme) == Some(false) {
Err(SloxError::with_token(
ErrorKind::Parse,
name,
"can't read local variable in its own initializer".to_owned(),
))
} else {
rs.resolve_local(id, name);
Ok(())
}
}
ast::ExprNode::Assignment { name, value, id } => {
value.resolve(rs)?;
rs.resolve_local(id, name);
Ok(())
}
ast::ExprNode::Lambda { params, body } => resolve_function(rs, params, body),
ast::ExprNode::Logical {
left,
operator: _,
right,
} => left.resolve(rs).and_then(|_| right.resolve(rs)),
ast::ExprNode::Binary {
left,
operator: _,
right,
} => left.resolve(rs).and_then(|_| right.resolve(rs)),
ast::ExprNode::Unary { operator: _, right } => right.resolve(rs),
ast::ExprNode::Grouping { expression } => expression.resolve(rs),
ast::ExprNode::Litteral { value: _ } => Ok(()),
ast::ExprNode::Call {
callee,
right_paren: _,
arguments,
} => callee.resolve(rs).and_then(|_| arguments.resolve(rs)),
}
}
}
impl VarResolver for Vec<ast::ExprNode> {
fn resolve(&self, rs: &mut ResolverState) -> ResolverResult {
for expr in self.iter() {
expr.resolve(rs)?;
}
Ok(())
}
}