rust-crafting-interpreters-.../src/interpreter/interpretable.rs

459 lines
16 KiB
Rust

use std::{cell::RefCell, rc::Rc};
use crate::{
ast,
errors::{ErrorHandler, InterpreterError},
interpreter::{Environment, EnvironmentRef, Value},
tokens::{Token, TokenType},
};
use super::functions::Function;
/// Evaluate an interpretable, returning its value.
pub fn evaluate(err_hdl: &mut ErrorHandler, ast: &dyn Interpretable) -> Option<Value> {
let env = Rc::new(RefCell::new(Environment::default()));
match ast.interpret(&env) {
Ok(v) => Some(v.result()),
Err(e) => {
e.report(err_hdl);
None
}
}
}
/* ------- *
* HELPERS *
* ------- */
/// Interpreter flow control, which may be either a value, a loop break or a
/// loop continuation.
#[derive(Debug)]
pub enum InterpreterFlowControl {
Result(Value),
Break(Option<String>),
Continue(Option<String>),
Return(Value),
}
impl InterpreterFlowControl {
/// Return the result's value. If the flow control value does not represent
/// a result, panic.
pub(crate) fn result(self) -> Value {
match self {
Self::Result(v) => v,
other => panic!("Result expected, {:?} found instead", other),
}
}
/// Check whether a flow control value contains actual flow control
/// information.
pub(crate) fn is_flow_control(&self) -> bool {
matches!(self, Self::Break(_) | Self::Continue(_) | Self::Return(_))
}
}
impl Default for InterpreterFlowControl {
fn default() -> Self {
Self::Result(Value::Nil)
}
}
impl From<Value> for InterpreterFlowControl {
fn from(value: Value) -> Self {
Self::Result(value)
}
}
/// A result returned by some part of the interpreter.
pub type InterpreterResult = Result<InterpreterFlowControl, InterpreterError>;
/// An Interpretable can be evaluated and will return a value.
pub trait Interpretable {
fn interpret(&self, environment: &EnvironmentRef) -> InterpreterResult;
}
/* ----------------------------- *
* INTERPRETER FOR PROGRAM NODES *
* ----------------------------- */
impl Interpretable for ast::ProgramNode {
fn interpret(&self, environment: &EnvironmentRef) -> InterpreterResult {
for stmt in self.0.iter() {
stmt.interpret(environment)?;
}
Ok(InterpreterFlowControl::default())
}
}
/* ------------------------------- *
* INTERPRETER FOR STATEMENT NODES *
* ------------------------------- */
impl Interpretable for ast::StmtNode {
fn interpret(&self, environment: &EnvironmentRef) -> InterpreterResult {
match self {
ast::StmtNode::VarDecl(name, expr) => self.on_var_decl(environment, name, expr),
ast::StmtNode::FunDecl { name, params, body } => {
self.on_fun_decl(environment, name, params, body)
}
ast::StmtNode::Expression(expr) => expr.interpret(environment),
ast::StmtNode::Print(expr) => self.on_print(environment, expr),
ast::StmtNode::Block(statements) => self.on_block(environment, statements),
ast::StmtNode::If {
condition,
then_branch,
else_branch,
} => self.on_if_statement(environment, condition, then_branch, else_branch),
ast::StmtNode::Loop {
label,
condition,
body,
after_body,
} => self.on_loop_statement(environment, label, condition, body, after_body),
ast::StmtNode::LoopControl {
is_break,
loop_name,
} => self.on_loop_control_statemement(*is_break, loop_name),
ast::StmtNode::Return { token: _, value } => {
self.on_return_statement(environment, value)
}
}
}
}
impl ast::StmtNode {
/// Handle the `print` statement.
fn on_print(&self, environment: &EnvironmentRef, expr: &ast::ExprNode) -> InterpreterResult {
let value = expr.interpret(environment)?.result();
let output = match value {
Value::Nil => String::from("nil"),
Value::Boolean(true) => String::from("true"),
Value::Boolean(false) => String::from("false"),
Value::Number(n) => n.to_string(),
Value::String(s) => s,
Value::Callable(c) => c.borrow().to_string(),
};
println!("{}", output);
Ok(InterpreterFlowControl::default())
}
/// Handle a variable declaration.
fn on_var_decl(
&self,
environment: &EnvironmentRef,
name: &Token,
initializer: &Option<ast::ExprNode>,
) -> InterpreterResult {
let variable = match initializer {
Some(expr) => Some(expr.interpret(environment)?.result()),
None => None,
};
environment.borrow_mut().define(name, variable)?;
Ok(InterpreterFlowControl::default())
}
/// Handle a function declaration.
fn on_fun_decl(
&self,
environment: &EnvironmentRef,
name: &Token,
params: &Vec<Token>,
body: &Vec<ast::StmtNode>,
) -> InterpreterResult {
let fun = Function::new(name, params, body);
environment
.borrow_mut()
.define(name, Some(Value::Callable(fun)))?;
Ok(InterpreterFlowControl::default())
}
/// Execute the contents of a block.
fn on_block(&self, environment: &EnvironmentRef, stmts: &[ast::StmtNode]) -> InterpreterResult {
let child = Environment::create_child(environment);
for stmt in stmts.iter() {
let result = stmt.interpret(&child)?;
if result.is_flow_control() {
return Ok(result);
}
}
Ok(InterpreterFlowControl::default())
}
/// Execute an if statement.
fn on_if_statement(
&self,
environment: &EnvironmentRef,
condition: &ast::ExprNode,
then_branch: &ast::StmtNode,
else_branch: &Option<Box<ast::StmtNode>>,
) -> InterpreterResult {
if condition.interpret(environment)?.result().is_truthy() {
then_branch.interpret(environment)
} else if let Some(else_stmt) = else_branch {
else_stmt.interpret(environment)
} else {
Ok(InterpreterFlowControl::default())
}
}
/// Execute a while statement.
fn on_loop_statement(
&self,
environment: &EnvironmentRef,
label: &Option<Token>,
condition: &ast::ExprNode,
body: &ast::StmtNode,
after_body: &Option<Box<ast::StmtNode>>,
) -> InterpreterResult {
let ln = label.as_ref().map(|token| token.lexeme.clone());
while condition.interpret(environment)?.result().is_truthy() {
let result = body.interpret(environment)?;
match &result {
InterpreterFlowControl::Result(_) => (),
InterpreterFlowControl::Continue(lv) if lv == &ln => (),
InterpreterFlowControl::Break(lv) if lv == &ln => break,
_ => return Ok(result),
}
if let Some(stmt) = after_body {
let result = stmt.interpret(environment)?;
match &result {
InterpreterFlowControl::Result(_) => (),
InterpreterFlowControl::Continue(lv) if lv == &ln => (),
InterpreterFlowControl::Break(lv) if lv == &ln => break,
_ => return Ok(result),
}
}
}
Ok(InterpreterFlowControl::default())
}
/// Execute a loop control statement.
fn on_loop_control_statemement(
&self,
is_break: bool,
label: &Option<Token>,
) -> InterpreterResult {
let name = label.as_ref().map(|token| token.lexeme.clone());
if is_break {
Ok(InterpreterFlowControl::Break(name))
} else {
Ok(InterpreterFlowControl::Continue(name))
}
}
/// Execute a return statement.
fn on_return_statement(
&self,
environment: &EnvironmentRef,
value: &Option<ast::ExprNode>,
) -> InterpreterResult {
let rv = match value {
None => Value::Nil,
Some(expr) => expr.interpret(environment)?.result(),
};
Ok(InterpreterFlowControl::Return(rv))
}
}
/* -------------------------------- *
* INTERPRETER FOR EXPRESSION NODES *
* -------------------------------- */
impl Interpretable for ast::ExprNode {
fn interpret(&self, environment: &EnvironmentRef) -> InterpreterResult {
match self {
ast::ExprNode::Assignment { name, value } => {
let value = value.interpret(environment)?.result();
environment.borrow_mut().assign(name, value)?;
Ok(InterpreterFlowControl::default())
}
ast::ExprNode::Logical {
left,
operator,
right,
} => self.on_logic(environment, left, operator, right),
ast::ExprNode::Binary {
left,
operator,
right,
} => self.on_binary(environment, left, operator, right),
ast::ExprNode::Unary { operator, right } => self.on_unary(environment, operator, right),
ast::ExprNode::Grouping { expression } => expression.interpret(environment),
ast::ExprNode::Litteral { value } => self.on_litteral(value),
ast::ExprNode::Variable { name } => Ok(environment.borrow().get(name)?.into()),
ast::ExprNode::Call {
callee,
right_paren,
arguments,
} => self.on_call(environment, callee, right_paren, arguments),
}
}
}
impl ast::ExprNode {
/// Evaluate a logical operator.
fn on_logic(
&self,
environment: &EnvironmentRef,
left: &ast::ExprNode,
operator: &Token,
right: &ast::ExprNode,
) -> InterpreterResult {
let left_value = left.interpret(environment)?.result();
if operator.token_type == TokenType::Or && left_value.is_truthy()
|| operator.token_type == TokenType::And && !left_value.is_truthy()
{
Ok(left_value.into())
} else {
right.interpret(environment)
}
}
/// Evaluate a binary operator.
fn on_binary(
&self,
environment: &EnvironmentRef,
left: &ast::ExprNode,
operator: &Token,
right: &ast::ExprNode,
) -> InterpreterResult {
let left_value = left.interpret(environment)?.result();
let right_value = right.interpret(environment)?.result();
match operator.token_type {
TokenType::Plus => match (left_value, right_value) {
(Value::Number(a), Value::Number(b)) => Ok(Value::Number(a + b).into()),
(Value::String(a), Value::String(b)) => Ok(Value::String(a + &b).into()),
_ => Err(InterpreterError::new(operator, "type error")),
},
TokenType::Minus => match (left_value, right_value) {
(Value::Number(a), Value::Number(b)) => Ok(Value::Number(a - b).into()),
_ => Err(InterpreterError::new(operator, "type error")),
},
TokenType::Star => match (left_value, right_value) {
(Value::Number(a), Value::Number(b)) => Ok(Value::Number(a * b).into()),
(Value::String(a), Value::Number(b)) => {
Ok(Value::String(a.repeat(b as usize)).into())
}
_ => Err(InterpreterError::new(operator, "type error")),
},
TokenType::Slash => match (left_value, right_value) {
(Value::Number(a), Value::Number(b)) => {
if b == 0. {
Err(InterpreterError::new(operator, "division by zero"))
} else {
Ok(Value::Number(a / b).into())
}
}
_ => Err(InterpreterError::new(operator, "type error")),
},
TokenType::Greater => match (left_value, right_value) {
(Value::Number(a), Value::Number(b)) => Ok(Value::Boolean(a > b).into()),
_ => Err(InterpreterError::new(operator, "type error")),
},
TokenType::GreaterEqual => match (left_value, right_value) {
(Value::Number(a), Value::Number(b)) => Ok(Value::Boolean(a >= b).into()),
_ => Err(InterpreterError::new(operator, "type error")),
},
TokenType::Less => match (left_value, right_value) {
(Value::Number(a), Value::Number(b)) => Ok(Value::Boolean(a < b).into()),
_ => Err(InterpreterError::new(operator, "type error")),
},
TokenType::LessEqual => match (left_value, right_value) {
(Value::Number(a), Value::Number(b)) => Ok(Value::Boolean(a <= b).into()),
_ => Err(InterpreterError::new(operator, "type error")),
},
TokenType::EqualEqual => Ok(Value::Boolean(left_value == right_value).into()),
TokenType::BangEqual => Ok(Value::Boolean(left_value != right_value).into()),
_ => panic!(
"Unsupported token type for binary operator (token {:?})",
operator
),
}
}
/// Evaluate an unary operator.
fn on_unary(
&self,
environment: &EnvironmentRef,
operator: &Token,
right: &ast::ExprNode,
) -> InterpreterResult {
let right_value = right.interpret(environment)?.result();
match operator.token_type {
TokenType::Minus => {
if let Value::Number(n) = right_value {
Ok(Value::Number(-n).into())
} else {
Err(InterpreterError::new(operator, "number expected"))
}
}
TokenType::Bang => Ok(Value::Boolean(!right_value.is_truthy()).into()),
_ => panic!(
"Unsupported token type for unary operator (token {:?})",
operator
),
}
}
/// Evaluate a litteral.
fn on_litteral(&self, value: &Token) -> InterpreterResult {
let out_value = match &value.token_type {
TokenType::Nil => Value::Nil,
TokenType::True => Value::Boolean(true),
TokenType::False => Value::Boolean(false),
TokenType::Number(n) => Value::Number(*n),
TokenType::String(s) => Value::String(s.clone()),
_ => panic!("Unsupported token type for litteral (token {:?})", value),
};
Ok(out_value.into())
}
/// Evaluate a function call.
fn on_call(
&self,
environment: &EnvironmentRef,
callee: &ast::ExprNode,
right_paren: &Token,
arguments: &Vec<ast::ExprNode>,
) -> InterpreterResult {
let callee = callee.interpret(environment)?.result();
let arg_values = {
let mut v = Vec::with_capacity(arguments.len());
for argument in arguments.iter() {
v.push(argument.interpret(environment)?.result());
}
v
};
if let Value::Callable(callable_ref) = &callee {
let callable = callable_ref.borrow();
if callable.arity() != arg_values.len() {
Err(InterpreterError::new(
right_paren,
&format!(
"expected {} arguments, found {}",
arg_values.len(),
callable.arity()
),
))
} else {
Ok(callable.call(environment, arg_values)?.into())
}
} else {
Err(InterpreterError::new(
right_paren,
"can only call functions and classes",
))
}
}
}