253 lines
7.1 KiB
GLSL
253 lines
7.1 KiB
GLSL
struct T_PBRMaterialOld
|
|
{
|
|
vec3 cAlbedo, cSpecular;
|
|
float roughness , anisotropy , subsurface , metallic;
|
|
};
|
|
|
|
struct T_PBRPrecomputedOld
|
|
{
|
|
float nDotC;
|
|
float ffndc; // Fresnel from n.c
|
|
vec3 tangent, bitangent;
|
|
float specAlpha , viewSpecular;
|
|
float aAspectX , aAspectY; // Anisotropy
|
|
};
|
|
|
|
|
|
float PBR_FresnelFromOld( in float dotProduct ) {
|
|
float d = clamp( 1.0 - dotProduct , 0 , 1 ) , d2 = d * d;
|
|
return d2 * d2 * d;
|
|
}
|
|
|
|
float PBR_GetSpecularOld( in float cosine , in float alpha )
|
|
{
|
|
float cs = cosine * cosine;
|
|
float as = alpha * alpha;
|
|
return clamp( 1. / ( cosine + sqrt( cs + as - cs * as ) ) , 0 , 1 );
|
|
}
|
|
|
|
// Precompute some of the material's properties. This is independant of the
|
|
// light source.
|
|
T_PBRPrecomputedOld PBR_PrecomputeOld(
|
|
in T_PBRMaterialOld material ,
|
|
in vec3 rayDir ,
|
|
in vec3 normal )
|
|
{
|
|
T_PBRPrecomputedOld rv;
|
|
|
|
rv.nDotC = dot( normal , rayDir );
|
|
rv.ffndc = PBR_FresnelFromOld( rv.nDotC );
|
|
|
|
rv.tangent = cross( vec3( 0. , 1. , 0. ) , normal );
|
|
if ( length( rv.tangent ) == 0.0 ) {
|
|
rv.tangent = cross( vec3( 1. , 0. , 0. ) , normal );
|
|
}
|
|
rv.tangent = normalize( rv.tangent );
|
|
rv.bitangent = normalize( cross( normal , rv.tangent ) );
|
|
|
|
rv.specAlpha = pow( material.roughness * .5 + .5 , 2. );
|
|
rv.viewSpecular = PBR_GetSpecularOld( rv.nDotC , rv.specAlpha );
|
|
|
|
const float sRoughness = material.roughness * material.roughness;
|
|
const float aspect = sqrt( 1.0 - material.anisotropy * .9 );
|
|
rv.aAspectX = max( .001, sRoughness / aspect );
|
|
rv.aAspectY = max( .001, sRoughness * aspect );
|
|
|
|
return rv;
|
|
}
|
|
|
|
// Actually compute a light source's contribution
|
|
vec3 PBR_ShadeOld(
|
|
in T_PBRMaterialOld material ,
|
|
in T_PBRPrecomputedOld precomputed ,
|
|
in vec3 rayDir ,
|
|
in vec3 normal ,
|
|
in vec3 lightDir )
|
|
{
|
|
const float nDotL = dot( normal , lightDir );
|
|
if ( nDotL <= 0. ) {
|
|
return vec3( 0. );
|
|
}
|
|
|
|
// FIXME: should be in common part
|
|
float lSpecular = dot( material.cSpecular , vec3( .3 , .6 , .1 ) );
|
|
vec3 cSpecular = lSpecular > 0 ? ( material.cSpecular / lSpecular ) : vec3( 1 );
|
|
|
|
const vec3 halfVec = normalize( lightDir + rayDir );
|
|
const float nDotH = dot( normal , halfVec );
|
|
const float lDotH = dot( lightDir , halfVec );
|
|
|
|
const float ffndl = PBR_FresnelFromOld( nDotL );
|
|
float grazingDiffuse = lDotH * lDotH * material.roughness;
|
|
float dSubsurface = mix( 1.0 , grazingDiffuse , ffndl )
|
|
* mix( 1.0 , grazingDiffuse , precomputed.ffndc );
|
|
dSubsurface = 1.25 * ( dSubsurface * ( 1.0 / ( nDotL + precomputed.nDotC ) - .5 ) + .5 );
|
|
grazingDiffuse = .5 + 2. * grazingDiffuse;
|
|
const float dFresnel = mix( 1.0 , grazingDiffuse , ffndl )
|
|
* mix( 1.0 , grazingDiffuse , precomputed.ffndc );
|
|
|
|
float specular = PBR_GetSpecularOld( nDotL , precomputed.specAlpha )
|
|
* precomputed.viewSpecular;
|
|
specular = mix( specular , 1.0 , PBR_FresnelFromOld( lDotH ) );
|
|
|
|
const vec3 d = vec3(
|
|
dot( halfVec , precomputed.tangent ) / precomputed.aAspectX ,
|
|
dot( halfVec , precomputed.bitangent ) / precomputed.aAspectY ,
|
|
nDotH );
|
|
const float ds = dot( d , d );
|
|
const float anisotropic = precomputed.aAspectX * precomputed.aAspectY
|
|
* ds * ds * 3.14159265;
|
|
|
|
return nDotL * ( material.cAlbedo
|
|
* mix( dFresnel , dSubsurface , material.subsurface )
|
|
* pow( 1.0 - material.metallic , 3 )
|
|
+ specular * cSpecular / anisotropic
|
|
);
|
|
}
|
|
|
|
|
|
// YAY let's do it again!
|
|
|
|
const float PI = 3.14159265;
|
|
|
|
float PBR_SchlickFresnel( in float u )
|
|
{
|
|
const float m = clamp( 1 - u , 0 , 1 ) ,
|
|
m2 = m * m;
|
|
return m2 * m2 * m;
|
|
}
|
|
|
|
float PBR_GTR1( in float nDotH , in float a )
|
|
{
|
|
if (a >= 1) {
|
|
return 1/PI;
|
|
}
|
|
float a2 = a * a ,
|
|
t = 1 + ( a2 - 1 ) * nDotH * nDotH;
|
|
return ( a2 - 1 ) / ( PI * log( a2 ) * t );
|
|
}
|
|
|
|
float PBR_GTR2( in float nDotH , in float a )
|
|
{
|
|
float a2 = a * a ,
|
|
t = 1 + ( a2 - 1 ) * nDotH * nDotH;
|
|
return a2 / ( PI * t * t );
|
|
}
|
|
|
|
float PBR_GTR2Aniso( in float nDotH ,
|
|
in float hDotX ,
|
|
in float hDotY ,
|
|
in float ax ,
|
|
in float ay )
|
|
{
|
|
float x = hDotX / ax , y = hDotY / ay ,
|
|
p = x * x + y * y + nDotH * nDotH;
|
|
return 1 / ( PI * ax * ay * p * p );
|
|
}
|
|
|
|
float PBR_SmithGGX( in float nDotV , in float alpha )
|
|
{
|
|
float a = alpha * alpha , b = nDotV * nDotV;
|
|
return 1 / ( nDotV + sqrt( a + b - a * b ) );
|
|
}
|
|
|
|
float PBR_SmithGGXAniso( in float nDotV ,
|
|
in float vDotX ,
|
|
in float vDotY ,
|
|
in float ax ,
|
|
in float ay )
|
|
{
|
|
float x = vDotX * ax , y = vDotY * ay;
|
|
return 1 / ( nDotV + sqrt( x * x + y * y + nDotV * nDotV ) );
|
|
}
|
|
|
|
vec3 NormalizeColor( in vec3 color )
|
|
{
|
|
float l = dot( color , vec3( .3 , .6 , .1 ) );
|
|
return l > 0 ? ( color / l ) : vec3( 1 );
|
|
}
|
|
|
|
struct T_PBRMaterial
|
|
{
|
|
vec3 cAlbedo;
|
|
float roughness;
|
|
float metallic;
|
|
float subsurface;
|
|
float anisotropy;
|
|
float specular; // Specular strengh for non-metals
|
|
float specularTint; // Albedo color% in specular tint (non-metals)
|
|
};
|
|
|
|
vec3 PBR_Shade( in T_PBRMaterial material ,
|
|
in vec3 camDir ,
|
|
in vec3 normal ,
|
|
in vec3 lightDir )
|
|
{
|
|
float nDotL = dot( normal , lightDir ) ,
|
|
nDotV = dot( normal , camDir );
|
|
if ( nDotL < 0 || nDotV < 0 ) {
|
|
return vec3( 0 );
|
|
}
|
|
|
|
vec3 tangent = cross( vec3( 0 , 1 , 0 ) , normal );
|
|
if ( length( tangent ) == 0 ) {
|
|
tangent = cross( vec3( 1 , 0 , 0 ) , normal );
|
|
}
|
|
tangent = normalize( tangent );
|
|
vec3 bitangent = normalize( cross( normal , tangent ) );
|
|
|
|
vec3 halfVec = normalize( lightDir + camDir ) ,
|
|
tint = NormalizeColor( material.cAlbedo ) ,
|
|
cSpecular = mix( material.specular * .08 * mix(
|
|
vec3( 1 ) , tint , material.specularTint ) ,
|
|
material.cAlbedo , material.metallic );
|
|
//vec3 Csheen = mix(vec3(1), Ctint, sheenTint);
|
|
|
|
float nDotH = dot( normal , halfVec ) ,
|
|
lDotH = dot( lightDir , halfVec ) ,
|
|
|
|
// Diffuse fresnel - go from 1 at normal incidence to .5 at grazing
|
|
// and mix in diffuse retro-reflection based on roughness
|
|
FL = PBR_SchlickFresnel( nDotL ) ,
|
|
FV = PBR_SchlickFresnel( nDotV ) ,
|
|
Fd90 = 0.5 + 2 * lDotH * lDotH * material.roughness ,
|
|
Fd = mix( 1 , Fd90 , FL ) * mix( 1 , Fd90 , FV ) ,
|
|
|
|
// Based on Hanrahan-Krueger brdf approximation of isotropic bssrdf
|
|
// 1.25 scale is used to (roughly) preserve albedo
|
|
// Fss90 used to "flatten" retroreflection based on roughness
|
|
Fss90 = lDotH * lDotH * material.roughness ,
|
|
Fss = mix( 1 , Fss90 , FL ) * mix( 1 , Fss90 , FV ) ,
|
|
ss = 1.25 * ( Fss * ( 1 / ( nDotL + nDotV ) - .5 ) + .5 ) ,
|
|
|
|
// Specular
|
|
aspect = sqrt( 1 - material.anisotropy * .9 ) ,
|
|
rsqr = material.roughness * material.roughness ,
|
|
ax = max( .001, rsqr / aspect ) ,
|
|
ay = max( .001, rsqr * aspect ) ,
|
|
Ds = PBR_GTR2Aniso( nDotH , dot( halfVec , tangent ) ,
|
|
dot( halfVec , bitangent ) , ax , ay ) ,
|
|
FH = PBR_SchlickFresnel( lDotH ) ,
|
|
Gs = PBR_SmithGGXAniso( nDotL , dot( lightDir , tangent ) ,
|
|
dot( lightDir , bitangent ) , ax , ay )
|
|
* PBR_SmithGGXAniso( nDotV , dot( camDir , tangent ) ,
|
|
dot( camDir , bitangent ) , ax , ay );
|
|
|
|
// sheen
|
|
//vec3 Fsheen = FH * sheen * Csheen;
|
|
|
|
// clearcoat (ior = 1.5 -> F0 = 0.04)
|
|
/*
|
|
float Dr = PBR_GTR1( nDotH , mix( .1 , .001 , clearcoatGloss));
|
|
float Fr = mix(.04, 1.0, FH);
|
|
float Gr = smithG_GGX(NdotL, .25) * smithG_GGX(NdotV, .25);
|
|
*/
|
|
|
|
vec3 Fs = mix( cSpecular , vec3(1) , FH );
|
|
return nDotL * ( ( ( 1 / PI )
|
|
* mix( Fd , ss , material.subsurface )
|
|
* material.cAlbedo /* + Fsheen */)
|
|
* pow( 1 - material.metallic , 3 )
|
|
+ clamp( Gs , 0 , 1 ) * Fs * Ds );
|
|
//+ .25*clearcoat*Gr*Fr*Dr;
|
|
}
|