//! type library //! include lib/utils.glsl struct T_PBRMaterial { vec3 cAlbedo; float roughness; float metallic; float subsurface; float anisotropy; float specular; // Specular strengh for non-metals float specularTint; // Albedo color% in specular tint (non-metals) }; // ----------------------------------------------------------------------------- float PBR_SchlickFresnel( in float u ) { const float m = clamp( 1 - u , 0 , 1 ) , m2 = m * m; return m2 * m2 * m; } float PBR_GTR2Aniso( in float nDotH , in float hDotX , in float hDotY , in float ax , in float ay ) { float x = hDotX / ax , y = hDotY / ay , p = x * x + y * y + nDotH * nDotH; return 1 / ( PI * ax * ay * p * p ); } float PBR_SmithGGXAniso( in float nDotV , in float vDotX , in float vDotY , in float ax , in float ay ) { float x = vDotX * ax , y = vDotY * ay; return 1 / ( nDotV + sqrt( x * x + y * y + nDotV * nDotV ) ); } vec3 PBR_Shade( in T_PBRMaterial material , in vec3 camDir , in vec3 normal , in vec3 lightDir ) { float nDotL = dot( normal , lightDir ) , nDotV = dot( normal , camDir ); if ( nDotL < 0 || nDotV < 0 ) { return vec3( 0 ); } vec3 tangent = cross( vec3( 0 , 1 , 0 ) , normal ); if ( length( tangent ) == 0 ) { tangent = cross( vec3( 1 , 0 , 0 ) , normal ); } tangent = normalize( tangent ); vec3 bitangent = normalize( cross( normal , tangent ) ); vec3 halfVec = normalize( lightDir + camDir ) , tint = M_NormalizeColor( material.cAlbedo ) , cSpecular = mix( material.specular * .08 * mix( vec3( 1 ) , tint , material.specularTint ) , material.cAlbedo , material.metallic ); //vec3 Csheen = mix(vec3(1), Ctint, sheenTint); float nDotH = dot( normal , halfVec ) , lDotH = dot( lightDir , halfVec ) , // Diffuse fresnel - go from 1 at normal incidence to .5 at grazing // and mix in diffuse retro-reflection based on roughness FL = PBR_SchlickFresnel( nDotL ) , FV = PBR_SchlickFresnel( nDotV ) , Fd90 = 0.5 + 2 * lDotH * lDotH * material.roughness , Fd = mix( 1 , Fd90 , FL ) * mix( 1 , Fd90 , FV ) , // Based on Hanrahan-Krueger brdf approximation of isotropic bssrdf // 1.25 scale is used to (roughly) preserve albedo // Fss90 used to "flatten" retroreflection based on roughness Fss90 = lDotH * lDotH * material.roughness , Fss = mix( 1 , Fss90 , FL ) * mix( 1 , Fss90 , FV ) , ss = 1.25 * ( Fss * ( 1 / ( nDotL + nDotV ) - .5 ) + .5 ) , // Specular aspect = sqrt( 1 - material.anisotropy * .9 ) , rsqr = material.roughness * material.roughness , ax = max( .001, rsqr / aspect ) , ay = max( .001, rsqr * aspect ) , Ds = PBR_GTR2Aniso( nDotH , dot( halfVec , tangent ) , dot( halfVec , bitangent ) , ax , ay ) , FH = PBR_SchlickFresnel( lDotH ) , Gs = PBR_SmithGGXAniso( nDotL , dot( lightDir , tangent ) , dot( lightDir , bitangent ) , ax , ay ) * PBR_SmithGGXAniso( nDotV , dot( camDir , tangent ) , dot( camDir , bitangent ) , ax , ay ); vec3 Fs = mix( cSpecular , vec3(1) , FH ); return nDotL * ( ( ( 1 / PI ) * mix( Fd , ss , material.subsurface ) * material.cAlbedo /* + Fsheen */) * pow( 1 - material.metallic , 3 ) + clamp( Gs , 0 , 1 ) * Fs * Ds ); }