#include "externals.hh" #include "sync.hh" #include "globals.hh" #include #include #include using ebcl::T_SRDParserConfig; namespace { const std::map< std::string , T_SyncSegment::E_SegmentType > SegmentTypes_( ([] { std::map< std::string , T_SyncSegment::E_SegmentType > t; t.emplace( "linear" , T_SyncSegment::LINEAR ); t.emplace( "ramp" , T_SyncSegment::RAMP ); t.emplace( "smooth" , T_SyncSegment::SMOOTH ); return t; })()); } /*= SRD parser for the curves ================================================*/ namespace { using namespace ebcl; bool CPEnterCurve_( T_SRDParserData const& data ) { *( data.targetData ) = T_SyncCurve{ (*data.input)[ 0 ].stringValue( ) }; return true; } bool CPExitCurve_( T_SRDParserData const& data ) { T_SyncCurve& curve( data.currentData->value< T_SyncCurve >( ) ); T_SyncCurves& curves( *( data.targetData->value< T_SharedPtr< T_SyncCurves > >( ) ) ); if ( curve.segments.empty( ) ) { T_StringBuilder sb; sb << "curve '" << curve.name << "' is empty"; data.errors.add( std::move( sb ) , (*data.input)[ 0 ] ); } if ( curves.curves.contains( curve.name ) ) { T_StringBuilder sb; sb << "duplicate curve '" << curve.name << "'"; data.errors.add( std::move( sb ) , (*data.input)[ 0 ] ); } else { curves.setCurve( std::move( curve ) ); } return true; } void CPHandleSegment_( const T_SyncSegment::E_SegmentType type , T_SRDList const& lValues , T_SRDList const& lDurations , T_SRDErrors& errors , T_SyncCurve& curve ) { bool failed = false; if ( lDurations.size( ) != lValues.size( ) - 1 ) { errors.add( "values / durations count mismatch" , lValues[ 0 ] ); failed = true; } // Check durations const auto nd( lDurations.size( ) ); for ( auto i = 1u ; i < nd ; i ++ ) { auto const& tok( lDurations[ i ] ); const uint64_t v( tok.longValue( ) ); if ( v < 1 || v > UINT32_MAX ) { errors.add( "invalid duration" , tok ); failed = true; } } if ( !failed ) { T_SyncSegment& segment( curve.segments.addNew( ) ); segment.type = type; segment.durations.ensureCapacity( nd - 1 ); for ( auto i = 1u ; i < nd ; i ++ ) { auto const& tok( lDurations[ i ] ); segment.durations.add( uint32_t( tok.longValue( ) ) ); } segment.values.ensureCapacity( nd ); for ( auto i = 1u ; i <= nd ; i ++ ) { auto const& tok( lValues[ i ] ); segment.values.add( tok.floatValue( ) ); } } } bool CPSegmentVD_( T_SRDParserData const& data ) { auto const& input( *data.input ); const auto ev( data.config.enumValue( "segment-type" , input[ 1 ].stringValue( ) ) ); assert( ev ); CPHandleSegment_( (T_SyncSegment::E_SegmentType) *ev , input[ 2 ].list( ) , input[ 3 ].list( ) , data.errors , data.targetData->value< T_SyncCurve >( ) ); return true; } bool CPSegmentDV_( T_SRDParserData const& data ) { auto const& input( *data.input ); const auto ev( data.config.enumValue( "segment-type" , input[ 1 ].stringValue( ) ) ); assert( ev ); CPHandleSegment_( (T_SyncSegment::E_SegmentType) *ev , input[ 3 ].list( ) , input[ 2 ].list( ) , data.errors , data.targetData->value< T_SyncCurve >( ) ); return true; } T_SRDParserConfig MakeCurvesParser_( ) { using namespace ebcl::SRD; T_SRDParserDefs defs( "default" ); defs << OnStart( []( T_SRDParserData const& data ) -> bool { *( data.currentData ) = NewShared< T_SyncCurves >( ); return true; } ); defs.enumeration( "segment-type" ) << "linear" << "ramp" << "smooth"; defs.context( "default" ) << ( Rule( ) << Text( ) << EnterContext( "segments" ) << OnEnter( CPEnterCurve_ ) << OnExit( CPExitCurve_ ) ); defs.context( "segments" ) << ( Rule( ) << "segment" << Enum( "segment-type" ) << ( List( ) << "values" << ( AtLeast( 2 ) << Numeric( ) ) ) << ( List( ) << "durations" << ( AtLeast( 1 ) << Integer( ) ) ) << CPSegmentVD_ ) << ( Rule( ) << "segment" << Enum( "segment-type" ) << ( List( ) << "durations" << ( AtLeast( 1 ) << Integer( ) ) ) << ( List( ) << "values" << ( AtLeast( 2 ) << Numeric( ) ) ) << CPSegmentDV_ ); return defs; } } /*= T_SyncTime ===============================================================*/ void T_SyncTime::setDuration( const float uDuration , const uint32_t iDuration ) { this->uDuration = std::max( 1e-3f , uDuration ); this->iDuration = std::max( 1u , iDuration ); time = std::min( time , duration( ) ); } /*= T_SyncCurves =============================================================*/ void T_SyncCurves::clear( ) { curves.clear( ); } void T_SyncCurves::setCurve( T_SyncCurve curve ) { curves.set( std::move( curve ) ); } int32_t T_SyncCurves::indexOf( T_String const& name ) noexcept { const auto idx( curves.indexOf( name ) ); return idx == ebcl::T_HashIndex::INVALID_INDEX ? -1 : int32_t( idx ); } /*= T_SyncCurveCache =========================================================*/ T_SyncCurveCache::T_SyncCurveCache( T_SyncTime const& time , T_SyncCurves const& curves , const uint32_t curve ) noexcept : curve( curve ) , curPos( 0 ) { auto const& c( curves.curves[ curve ] ); const auto ns( c.segments.size( ) ); assert( ns > 0 ); uint32_t s = 0; for ( auto i = 0u ; i < ns ; i ++ ) { auto const& v( c.segments[ i ] ); assert( v.durations.size( ) == v.values.size( ) - 1 ); const auto nd( v.durations.size( ) ); for ( auto j = 0u ; j < nd ; j ++ ) { const auto sStart( s * time.uDuration ); if ( time.time >= sStart ) { curPos = segStarts.size( ); } segStarts.add( sStart ); segRefs.add( std::make_pair( i , j ) ); s += v.durations[ j ]; segEnds.add( std::min( s , time.iDuration ) * time.uDuration ); if ( s > time.iDuration ) { return; } } } } /*----------------------------------------------------------------------------*/ uint32_t T_SyncCurveCache::findSegment( const float time ) const noexcept { const auto ns( segStarts.size( ) ); for ( auto i = 0u ; i < ns ; i ++ ) { if ( segStarts[ i ] <= time && segEnds[ i ] > time ) { return i; } } return ns; } /*----------------------------------------------------------------------------*/ float T_SyncCurveCache::valueAt( T_SyncTime const& time , T_SyncCurves const& curves , const float position ) const noexcept { return segmentValue( time.time , findSegment( position ) , curves.curves[ curve ].segments ); } float T_SyncCurveCache::value( T_SyncTime const& time , T_SyncCurves const& curves ) noexcept { const auto t( time.time ); // Check / update curPos const float ss0( curPos == segStarts.size( ) ? time.duration( ) : segStarts[ curPos ] ); if ( ss0 > t ) { curPos = findSegment( t ); } else { while ( curPos < segStarts.size( ) && t >= segEnds[ curPos ] ) { curPos ++; } } // We got the actual index in curPos, now compute the value. return segmentValue( t , curPos , curves.curves[ curve ].segments ); } /*----------------------------------------------------------------------------*/ float T_SyncCurveCache::segmentValue( float time , uint32_t segIndex , T_Array< T_SyncSegment > const& segments ) const noexcept { const auto sss( segStarts.size( ) ); if ( segIndex >= sss ) { assert( sss != 0 ); segIndex = sss - 1; time = segEnds[ segIndex ]; } auto const& idxp( segRefs[ segIndex ] ); auto const& seg( segments[ idxp.first ] ); // Interpolation factor const float st( segStarts[ segIndex ] ); const float et( segEnds[ segIndex ] ); const float v0 = ( time - st ) / ( et - st ); float v = v0; if ( seg.type != T_SyncSegment::LINEAR ) { v *= v0; if ( seg.type == T_SyncSegment::SMOOTH ) { v *= 3 - 2 * v0; } } const auto pid( idxp.second ); const float sv( seg.values[ pid ] ); const float ev( seg.values[ pid + 1 ] ); #if 0 printf( "[%.2f] gidx %d - seg %d idx %d - %f\n" , time , segIndex , idxp.first , idxp.second , v * ( ev - sv ) + sv ); #endif return v * ( ev - sv ) + sv; } /*= T_SyncValues =============================================================*/ T_SyncValues::T_SyncValues( ) { values.add( 0 ); } // --------------------------------------------------------------------- void T_SyncValues::clear( ) { index.clear( ); identifiers.clear( ); values.clear( ); overriden.clear( ); values.add( 0 ); } bool T_SyncValues::addValue( T_String const& name , const float initial ) noexcept { const uint32_t hash{ ComputeHash( name ) }; uint32_t existing{ index.first( hash ) }; while ( existing != T_HashIndex::INVALID_INDEX ) { if ( name == identifiers[ existing ] ) { return false; } existing = index.next( existing ); } const auto li( values.size( ) ); index.add( hash ); identifiers.add( name ); values.add( initial ); std::swap( values[ li ] , values[ li - 1 ] ); overriden.add( false ); return true; } uint32_t T_SyncValues::indexOf( T_String const& name ) const noexcept { const uint32_t hash{ ComputeHash( name ) }; uint32_t existing{ index.first( hash ) }; while ( existing != T_HashIndex::INVALID_INDEX ) { if ( name == identifiers[ existing ] ) { return existing; } existing = index.next( existing ); } return values.size( ) - 1; } /*= A_SyncOverride ===========================================================*/ A_SyncOverride::A_SyncOverride( T_String type ) noexcept : type_( std::move( type ) ) { } A_SyncOverride::~A_SyncOverride( ) { } void A_SyncOverride::setup( ) noexcept { const auto ni( inputs_.size( ) ); assert( ni != 0 ); assert( inputPos_.size( ) == 0 ); inputPos_.ensureCapacity( ni ); for ( auto i = 0u ; i < ni ; i ++ ) { // FIXME: insufficient; the manager should be made aware of // the presence of an override for that value (and it should // fail for missing values). inputPos_.add( Globals::Sync( ).inputPos( inputs_[ ni ] ) ); } } /*= T_SyncOverrideSection ====================================================*/ T_SyncOverrideSection::T_SyncOverrideSection( T_String title ) noexcept : title( std::move( title ) ) { } void T_SyncOverrideSection::merge( T_SyncOverrideSection& other ) noexcept { for ( auto& os : other.subsections ) { section( os->title ).merge( *os ); } for ( auto& ov : other.overrides ) { overrides.add( std::move( ov ) ); } } void T_SyncOverrideSection::makeUI( const bool topLevel ) noexcept { // FIXME: fuck that toOSString shit. const bool display( topLevel ? ImGui::CollapsingHeader( (char*) title.toOSString( ).data( ) ) : ImGui::TreeNode( (char*) title.toOSString( ).data( ) ) ); if ( !display ) { return; } for ( auto& os : subsections ) { os->makeUI( false ); } if ( subsections.size( ) && overrides.size( ) ) { ImGui::Separator( ); } for ( auto& ov : overrides ) { ov->makeUI( ); } if ( !topLevel ) { ImGui::TreePop( ); } } T_SyncOverrideSection& T_SyncOverrideSection::section( T_String const& name ) noexcept { for ( auto& ov : subsections ) { if ( ov->title == name ) { return *ov; } } return *subsections[ subsections.add( NewOwned< T_SyncOverrideSection >( name ) ) ]; } T_SyncOverrideSection const* T_SyncOverrideSection::section( T_String const& name ) const noexcept { for ( auto& ov : subsections ) { if ( ov->title == name ) { return ov.get( ); } } return nullptr; } /*= T_SyncManager ============================================================*/ T_SyncManager::T_SyncManager( ) : pConfig_( MakeCurvesParser_( ) ) , pdOverrides_( "default" ) { using namespace ebcl::SRD; pdOverrides_.context( "default" ) << ( Rule( ) << "category" << Text( ) << EnterContext( "category" ) ); pdOverrides_.context( "category" ); } /*----------------------------------------------------------------------------*/ void T_SyncManager::setDuration( const float uDuration , const uint32_t iDuration ) { time_.setDuration( uDuration , iDuration ); updateCurveCaches( ); } void T_SyncManager::setTime( const float time ) { time_.setTime( time ); updateValues( ); } /*----------------------------------------------------------------------------*/ void T_SyncManager::checkCurveFile( ) { if ( watcher_ ) { return; } watcher_ = NewOwned< T_WatchedFiles >( Globals::Watcher( ) , [this] { curvesChanged_( ); } ); watcher_->watch( "curves.srd" ); bool missing; loadCurves_( missing ); } void T_SyncManager::clearCurves( ) { curves_.clear( ); updateCurveCaches( ); } void T_SyncManager::setCurve( T_SyncCurve curve ) { curves_.setCurve( curve ); updateCurveCaches( ); } void T_SyncManager::curvesChanged_( ) { bool missing; loadCurves_( missing ); } bool T_SyncManager::loadCurves_( bool& missing ) { printf( "Loading curves data\n" ); missing = true; try { using namespace ebcl; const T_SRDParserConfig cfg( MakeCurvesParser_( ) ); T_File file( "curves.srd" , E_FileMode::READ_ONLY ); file.open( ); missing = false; T_FileInputStream fis( file ); T_SRDParser parser( cfg ); T_SRDTextReader reader( parser ); reader.read( "curves.srd" , fis ); curves_ = std::move( *parser.getData< T_SharedPtr< T_SyncCurves > >( ) ); } catch ( ebcl::X_StreamError const& e ) { printf( "... ERR %s\n" , e.what( ) ); return false; } catch ( ebcl::X_SRDErrors const& e ) { T_StringBuilder sb; auto const ne( e.errors.size( ) ); for ( auto i = 0u ; i < ne ; i ++ ) { auto const& err( e.errors[ i ] ); sb << "... ERR " << err.location( ) << ": " << err.error( ) << '\n'; } sb << '\0'; printf( "%s" , sb.data( ) ); return false; } printf( "... success\n" ); updateCurveCaches( ); return true; } /*----------------------------------------------------------------------------*/ void T_SyncManager::updateCurveCaches( ) { curveCaches_.clear( ); const uint32_t nv( values_.identifiers.size( ) ); for ( auto i = 0u ; i < nv ; i ++ ) { auto const& id( values_.identifiers[ i ] ); const auto cp( curves_.indexOf( id ) ); if ( cp < 0 ) { curveCaches_.addNew( ); } else { curveCaches_.add( NewOwned< T_SyncCurveCache >( time_ , curves_ , cp ) ); } } updateValues( ); } void T_SyncManager::updateValues( ) { const auto nv( values_.identifiers.size( ) ); assert( nv == curveCaches_.size( ) ); for ( auto i = 0u ; i < nv ; i ++ ) { auto const& cc( curveCaches_[ i ] ); if ( !cc || values_.overriden[ i ] ) { continue; } values_.values[ i ] = cc->value( time_ , curves_ ); } } /*----------------------------------------------------------------------------*/ void T_SyncManager::registerOverride( ebcl::T_SRDInputRule rule ) { pdOverrides_.context( "category" ) << rule; if ( pcOverrides_ ) { pcOverrides_.clear( ); } // pcOverrides_ = NewOwned< T_SRDParserConfig >( pdOverrides_ ); } #if 0 void T_SyncManager::makeUI( ) { auto const& dspSize( ImGui::GetIO( ).DisplaySize ); if ( wOverrides ) { ImGui::SetNextWindowSize( ImVec2( 300 , dspSize.y - 300 ) , ImGuiSetCond_Once ); ImGui::SetNextWindowPos( ImVec2( 0 , 150 ) , ImGuiSetCond_Once ); ImGui::Begin( "Input overrides" ); displayOvSections( uiRoot , true ); ImGui::End( ); } if ( wCurves ) { ImGui::SetNextWindowSize( ImVec2( dspSize.x , 150 ) , ImGuiSetCond_Once ); ImGui::SetNextWindowPos( ImVec2( 0 , dspSize.y - 150 ) , ImGuiSetCond_Once ); ImGui::Begin( "Curve editor" ); // XXX contents ImGui::End( ); } } void T_SyncManager::displayOvSections( T_SyncUISections& sections , const bool topLevel ) { for ( auto& s : sections ) { const bool display( topLevel ? ImGui::CollapsingHeader( s->title.c_str( ) ) : ImGui::TreeNode( s->title.c_str( ) ) ); if ( !display ) { continue; } displayOvSections( s->subsections ); if ( s->subsections.size( ) && s->overrides.size( ) ) { ImGui::Separator( ); } displayOvControls( s->overrides ); if ( !topLevel ) { ImGui::TreePop( ); } } } void T_SyncManager::displayOvControls( T_SyncUIOverrides& overrides ) { for ( auto& o : overrides ) { // XXX enable override checkbox should be selected and disabled // if there is no curve const bool changed( ImGui::Checkbox( "" , &o->enabled ) ); if ( changed ) { // XXX mark the inputs as coming from the UI / the curves } ImGui::SameLine( ); switch ( o->type ) { case T_SyncUIOverride::FLOAT: case T_SyncUIOverride::VEC2: case T_SyncUIOverride::VEC3: case T_SyncUIOverride::VEC4: case T_SyncUIOverride::INT: case T_SyncUIOverride::COLOR: case T_SyncUIOverride::COLOR_GRADING: case T_SyncUIOverride::CAMERA: break; } } } #endif