//////////////////////////////////////////////////////////////// // // HG_SDF // // GLSL LIBRARY FOR BUILDING SIGNED DISTANCE BOUNDS // // version 2016-01-10 // // Check http://mercury.sexy/hg_sdf for updates // and usage examples. Send feedback to spheretracing@mercury.sexy. // // Brought to you by MERCURY http://mercury.sexy // // // // Released as Creative Commons Attribution-NonCommercial (CC BY-NC) // //////////////////////////////////////////////////////////////// // // How to use this: // // 1. Build some system to #include glsl files in each other. // Include this one at the very start. Or just paste everywhere. // 2. Build a sphere tracer. See those papers: // * "Sphere Tracing" http://graphics.cs.illinois.edu/sites/default/files/zeno.pdf // * "Enhanced Sphere Tracing" http://lgdv.cs.fau.de/get/2234 // The Raymnarching Toolbox Thread on pouet can be helpful as well // http://www.pouet.net/topic.php?which=7931&page=1 // and contains links to many more resources. // 3. Use the tools in this library to build your distance bound f(). // 4. ??? // 5. Win a compo. // // (6. Buy us a beer or a good vodka or something, if you like.) // //////////////////////////////////////////////////////////////// // // Table of Contents: // // * Helper functions and macros // * Collection of some primitive objects // * Domain Manipulation operators // * Object combination operators // //////////////////////////////////////////////////////////////// // // Why use this? // // The point of this lib is that everything is structured according // to patterns that we ended up using when building geometry. // It makes it more easy to write code that is reusable and that somebody // else can actually understand. Especially code on Shadertoy (which seems // to be what everybody else is looking at for "inspiration") tends to be // really ugly. So we were forced to do something about the situation and // release this lib ;) // // Everything in here can probably be done in some better way. // Please experiment. We'd love some feedback, especially if you // use it in a scene production. // // The main patterns for building geometry this way are: // * Stay Lipschitz continuous. That means: don't have any distance // gradient larger than 1. Try to be as close to 1 as possible - // Distances are euclidean distances, don't fudge around. // Underestimating distances will happen. That's why calling // it a "distance bound" is more correct. Don't ever multiply // distances by some value to "fix" a Lipschitz continuity // violation. The invariant is: each fSomething() function returns // a correct distance bound. // * Use very few primitives and combine them as building blocks // using combine opertors that preserve the invariant. // * Multiply objects by repeating the domain (space). // If you are using a loop inside your distance function, you are // probably doing it wrong (or you are building boring fractals). // * At right-angle intersections between objects, build a new local // coordinate system from the two distances to combine them in // interesting ways. // * As usual, there are always times when it is best to not follow // specific patterns. // //////////////////////////////////////////////////////////////// // // FAQ // // Q: Why is there no sphere tracing code in this lib? // A: Because our system is way too complex and always changing. // This is the constant part. Also we'd like everyone to // explore for themselves. // // Q: This does not work when I paste it into Shadertoy!!!! // A: Yes. It is GLSL, not GLSL ES. We like real OpenGL // because it has way more features and is more likely // to work compared to browser-based WebGL. We recommend // you consider using OpenGL for your productions. Most // of this can be ported easily though. // // Q: How do I material? // A: We recommend something like this: // Write a material ID, the distance and the local coordinate // p into some global variables whenever an object's distance is // smaller than the stored distance. Then, at the end, evaluate // the material to get color, roughness, etc., and do the shading. // // Q: I found an error. Or I made some function that would fit in // in this lib. Or I have some suggestion. // A: Awesome! Drop us a mail at spheretracing@mercury.sexy. // // Q: Why is this not on github? // A: Because we were too lazy. If we get bugged about it enough, // we'll do it. // // Q: Your license sucks for me. // A: Oh. What should we change it to? // // Q: I have trouble understanding what is going on with my distances. // A: Some visualization of the distance field helps. Try drawing a // plane that you can sweep through your scene with some color // representation of the distance field at each point and/or iso // lines at regular intervals. Visualizing the length of the // gradient (or better: how much it deviates from being equal to 1) // is immensely helpful for understanding which parts of the // distance field are broken. // //////////////////////////////////////////////////////////////// //! type library //! include lib/utils.glsl //////////////////////////////////////////////////////////////// // // PRIMITIVE DISTANCE FUNCTIONS // //////////////////////////////////////////////////////////////// // // Conventions: // // Everything that is a distance function is called fSomething. // The first argument is always a point in 2 or 3-space called
.
// Unless otherwise noted, (if the object has an intrinsic "up"
// side or direction) the y axis is "up" and the object is
// centered at the origin.
//
////////////////////////////////////////////////////////////////
float HG_fSphere(vec3 p, float r) {
return length(p) - r;
}
// Plane with normal n (n is normalized) at some distance from the origin
float HG_fPlane(vec3 p, vec3 n, float distanceFromOrigin) {
return dot(p, n) + distanceFromOrigin;
}
// Cheap Box: distance to corners is overestimated
float HG_fBoxCheap(vec3 p, vec3 b) { //cheap box
return M_VecMax(abs(p) - b);
}
// Box: correct distance to corners
float HG_fBox(vec3 p, vec3 b) {
vec3 d = abs(p) - b;
return length(max(d, vec3(0))) + M_VecMax(min(d, vec3(0)));
}
// Same as above, but in two dimensions (an endless box)
float HG_fBox2Cheap(vec2 p, vec2 b) {
return M_VecMax(abs(p)-b);
}
float HG_fBox2(vec2 p, vec2 b) {
vec2 d = abs(p) - b;
return length(max(d, vec2(0))) + M_VecMax(min(d, vec2(0)));
}
// Endless "corner"
float HG_fCorner (vec2 p) {
return length(max(p, vec2(0))) + M_VecMax(min(p, vec2(0)));
}
// Blobby ball object. You've probably seen it somewhere. This is not a correct distance bound, beware.
float HG_fBlob(vec3 p) {
p = abs(p);
if (p.x < max(p.y, p.z)) p = p.yzx;
if (p.x < max(p.y, p.z)) p = p.yzx;
float b = max(max(max(
dot(p, normalize(vec3(1, 1, 1))),
dot(p.xz, normalize(vec2(PHI+1, 1)))),
dot(p.yx, normalize(vec2(1, PHI)))),
dot(p.xz, normalize(vec2(1, PHI))));
float l = length(p);
return l - 1.5 - 0.2 * (1.5 / 2)* cos(min(sqrt(1.01 - b / l)*(PI / 0.25), PI));
}
// Cylinder standing upright on the xz plane
float HG_fCylinder(vec3 p, float r, float height) {
float d = length(p.xz) - r;
d = max(d, abs(p.y) - height);
return d;
}
// Capsule: A Cylinder with round caps on both sides
float HG_fCapsule(vec3 p, float r, float c) {
return mix(length(p.xz) - r, length(vec3(p.x, abs(p.y) - c, p.z)) - r, step(c, abs(p.y)));
}
// Distance to line segment between and , used for fCapsule() version 2below
float HG_fLineSegment(vec3 p, vec3 a, vec3 b) {
vec3 ab = b - a;
float t = M_Saturate(dot(p - a, ab) / dot(ab, ab));
return length((ab*t + a) - p);
}
// Capsule version 2: between two end points and with radius r
float HG_fCapsule(vec3 p, vec3 a, vec3 b, float r) {
return HG_fLineSegment(p, a, b) - r;
}
// Torus in the XZ-plane
float HG_fTorus(vec3 p, float smallRadius, float largeRadius) {
return length(vec2(length(p.xz) - largeRadius, p.y)) - smallRadius;
}
// A circle line. Can also be used to make a torus by subtracting the smaller radius of the torus.
float HG_fCircle(vec3 p, float r) {
float l = length(p.xz) - r;
return length(vec2(p.y, l));
}
// A circular disc with no thickness (i.e. a cylinder with no height).
// Subtract some value to make a flat disc with rounded edge.
float HG_fDisc(vec3 p, float r) {
float l = length(p.xz) - r;
return l < 0 ? abs(p.y) : length(vec2(p.y, l));
}
// Hexagonal prism, circumcircle variant
float HG_fHexagonCircumcircle(vec3 p, vec2 h) {
vec3 q = abs(p);
return max(q.y - h.y, max(q.x*sqrt(3)*0.5 + q.z*0.5, q.z) - h.x);
//this is mathematically equivalent to this line, but less efficient:
//return max(q.y - h.y, max(dot(vec2(cos(PI/3), sin(PI/3)), q.zx), q.z) - h.x);
}
// Hexagonal prism, incircle variant
float HG_fHexagonIncircle(vec3 p, vec2 h) {
return HG_fHexagonCircumcircle(p, vec2(h.x*sqrt(3)*0.5, h.y));
}
// Cone with correct distances to tip and base circle. Y is up, 0 is in the middle of the base.
float HG_fCone(vec3 p, float radius, float height) {
vec2 q = vec2(length(p.xz), p.y);
vec2 tip = q - vec2(0, height);
vec2 mantleDir = normalize(vec2(height, radius));
float mantle = dot(tip, mantleDir);
float d = max(mantle, -q.y);
float projected = dot(tip, vec2(mantleDir.y, -mantleDir.x));
// distance to tip
if ((q.y > height) && (projected < 0)) {
d = max(d, length(tip));
}
// distance to base ring
if ((q.x > radius) && (projected > length(vec2(height, radius)))) {
d = max(d, length(q - vec2(radius, 0)));
}
return d;
}
//
// "Generalized Distance Functions" by Akleman and Chen.
// see the Paper at https://www.viz.tamu.edu/faculty/ergun/research/implicitmodeling/papers/sm99.pdf
//
// This set of constants is used to construct a large variety of geometric primitives.
// Indices are shifted by 1 compared to the paper because we start counting at Zero.
// Some of those are slow whenever a driver decides to not unroll the loop,
// which seems to happen for fIcosahedron und fTruncatedIcosahedron on nvidia 350.12 at least.
// Specialized implementations can well be faster in all cases.
//
const vec3 HG_GDFVectors[19] = vec3[](
normalize(vec3(1, 0, 0)),
normalize(vec3(0, 1, 0)),
normalize(vec3(0, 0, 1)),
normalize(vec3(1, 1, 1 )),
normalize(vec3(-1, 1, 1)),
normalize(vec3(1, -1, 1)),
normalize(vec3(1, 1, -1)),
normalize(vec3(0, 1, PHI+1)),
normalize(vec3(0, -1, PHI+1)),
normalize(vec3(PHI+1, 0, 1)),
normalize(vec3(-PHI-1, 0, 1)),
normalize(vec3(1, PHI+1, 0)),
normalize(vec3(-1, PHI+1, 0)),
normalize(vec3(0, PHI, 1)),
normalize(vec3(0, -PHI, 1)),
normalize(vec3(1, 0, PHI)),
normalize(vec3(-1, 0, PHI)),
normalize(vec3(PHI, 1, 0)),
normalize(vec3(-PHI, 1, 0))
);
// Version with variable exponent.
// This is slow and does not produce correct distances, but allows for bulging of objects.
float HG_fGDF(vec3 p, float r, float e, int begin, int end) {
float d = 0;
for (int i = begin; i <= end; ++i)
d += pow(abs(dot(p, HG_GDFVectors[i])), e);
return pow(d, 1/e) - r;
}
// Version with without exponent, creates objects with sharp edges and flat faces
float HG_fGDF(vec3 p, float r, int begin, int end) {
float d = 0;
for (int i = begin; i <= end; ++i)
d = max(d, abs(dot(p, HG_GDFVectors[i])));
return d - r;
}
// Primitives follow:
float HG_fOctahedron(vec3 p, float r, float e) {
return HG_fGDF(p, r, e, 3, 6);
}
float HG_fDodecahedron(vec3 p, float r, float e) {
return HG_fGDF(p, r, e, 13, 18);
}
float HG_fIcosahedron(vec3 p, float r, float e) {
return HG_fGDF(p, r, e, 3, 12);
}
float HG_fTruncatedOctahedron(vec3 p, float r, float e) {
return HG_fGDF(p, r, e, 0, 6);
}
float HG_fTruncatedIcosahedron(vec3 p, float r, float e) {
return HG_fGDF(p, r, e, 3, 18);
}
float HG_fOctahedron(vec3 p, float r) {
return HG_fGDF(p, r, 3, 6);
}
float HG_fDodecahedron(vec3 p, float r) {
return HG_fGDF(p, r, 13, 18);
}
float HG_fIcosahedron(vec3 p, float r) {
return HG_fGDF(p, r, 3, 12);
}
float HG_fTruncatedOctahedron(vec3 p, float r) {
return HG_fGDF(p, r, 0, 6);
}
float HG_fTruncatedIcosahedron(vec3 p, float r) {
return HG_fGDF(p, r, 3, 18);
}
////////////////////////////////////////////////////////////////
//
// DOMAIN MANIPULATION OPERATORS
//
////////////////////////////////////////////////////////////////
//
// Conventions:
//
// Everything that modifies the domain is named pSomething.
//
// Many operate only on a subset of the three dimensions. For those,
// you must choose the dimensions that you want manipulated
// by supplying e.g. is unchanged and cells
// are centered on the origin so objects don't have to be moved to fit.
//
//
////////////////////////////////////////////////////////////////
// Rotate around a coordinate axis (i.e. in a plane perpendicular to that axis) by angle .
// Read like this: R(p.xz, a) rotates "x towards z".
// This is fast if is a compile-time constant and slower (but still practical) if not.
void HG_pR(inout vec2 p, float a) {
p = cos(a)*p + sin(a)*vec2(p.y, -p.x);
}
// Shortcut for 45-degrees rotation
void HG_pR45(inout vec2 p) {
p = (p + vec2(p.y, -p.x))*sqrt(0.5);
}
// Repeat space along one axis. Use like this to repeat along the x axis:
//