Reorganised shaders

This commit is contained in:
Emmanuel BENOîT 2017-10-04 19:06:50 +02:00
parent b75cee8638
commit 5306ce4535
12 changed files with 318 additions and 472 deletions

View file

@ -1,3 +1,5 @@
//! type chunk
layout( location = 0 ) uniform float u_Time;
layout( location = 1 ) uniform vec2 u_Resolution;
layout( location = 2 ) uniform vec3 u_CamPos;
@ -7,16 +9,7 @@ layout( location = 5 ) uniform float u_NearPlane;
layout( location = 6 ) uniform vec3 u_LightDir;
layout( location = 7 ) uniform vec4 u_Render;
vec3 camPos , lookAt , camUp;
float nearPlane;
layout( location = 0 ) out vec3 o_Color;
layout( location = 1 ) out float o_Z;
void setCamFromUniforms( ) {
camPos = u_CamPos;
lookAt = u_LookAt;
camUp = u_CamUp;
nearPlane = u_NearPlane;
}
//! include lib/raymarching.glsl

View file

@ -1,7 +1,7 @@
#version 450 core
//! type fragment
//! include dof-common.i.glsl
//! include chunks/dof.glsl
void main()
{

View file

@ -1,7 +1,7 @@
#version 450 core
//! type fragment
//! include dof-common.i.glsl
//! include chunks/dof.glsl
void main()
{

View file

@ -0,0 +1,90 @@
//! type library
vec2 RM_Map( in vec3 pos );
// -----------------------------------------------------------------------------
vec3 RM_GetNormal(
in vec3 pos )
{
vec2 v = vec2( .0005 , 0 );
return normalize( vec3(
RM_Map( pos + v.xyy ).x - RM_Map( pos - v.xyy ).x ,
RM_Map( pos + v.yxy ).x - RM_Map( pos - v.yxy ).x ,
RM_Map( pos + v.yyx ).x - RM_Map( pos - v.yyx ).x ) );
}
// -----------------------------------------------------------------------------
vec3 RM_Basic(
in vec3 origin ,
in vec3 direction ,
in int steps ,
in float factor ,
in float epsilon ,
in float dMin ,
in float dMax )
{
int i = 0;
float dist = dMin , mat = -1;
for ( ; i < steps ; ++ i ) {
vec2 res = RM_Map( origin + direction * dist );
if ( abs( res.x ) < epsilon || dist > dMax ) {
break;
}
dist += res.x * factor;
mat = res.y;
}
return vec3( dist , dist >= dMax ? -1 : mat , i );
}
vec3 RM_Advanced(
in vec3 origin ,
in vec3 direction ,
in int steps ,
in float factor ,
in float epsilon ,
in float dMin ,
in float dMax )
{
int i = 0;
float dist = dMin ,
omega = factor ,
cError = 1 / 0. ,
cDist = dMin ,
pRad = 0 ,
sLen = 0;
for ( ; i < steps ; ++ i ) {
vec2 res = RM_Map( origin + direction * dist );
float rad = abs( res.x );
bool sorFail = omega > 1 && ( rad + pRad ) < sLen;
if ( sorFail ) {
sLen -= omega * sLen;
omega = 1;
} else {
sLen = res.x * omega;
}
pRad = rad;
float error = rad / dist;
if ( !sorFail && error < cError ) {
cError = error;
cDist = dist;
}
if ( !sorFail && error < epsilon || dist > dMax ) {
break;
}
dist += sLen;
}
if ( dist <= dMax && cError <= epsilon ) {
return vec3( cDist , RM_Map( origin + direction * cDist ).y , i );
}
return vec3( cDist , -1 , steps );
}

View file

@ -1,3 +1,5 @@
//! type library
struct T_BPMaterial
{
vec3 cAlbedo, cSpecular;

View file

@ -0,0 +1,111 @@
//! type library
//! include lib/utils.glsl
struct T_PBRMaterial
{
vec3 cAlbedo;
float roughness;
float metallic;
float subsurface;
float anisotropy;
float specular; // Specular strengh for non-metals
float specularTint; // Albedo color% in specular tint (non-metals)
};
// -----------------------------------------------------------------------------
float PBR_SchlickFresnel(
in float u )
{
const float m = clamp( 1 - u , 0 , 1 ) ,
m2 = m * m;
return m2 * m2 * m;
}
float PBR_GTR2Aniso(
in float nDotH ,
in float hDotX ,
in float hDotY ,
in float ax ,
in float ay )
{
float x = hDotX / ax , y = hDotY / ay ,
p = x * x + y * y + nDotH * nDotH;
return 1 / ( PI * ax * ay * p * p );
}
float PBR_SmithGGXAniso(
in float nDotV ,
in float vDotX ,
in float vDotY ,
in float ax ,
in float ay )
{
float x = vDotX * ax , y = vDotY * ay;
return 1 / ( nDotV + sqrt( x * x + y * y + nDotV * nDotV ) );
}
vec3 PBR_Shade(
in T_PBRMaterial material ,
in vec3 camDir ,
in vec3 normal ,
in vec3 lightDir )
{
float nDotL = dot( normal , lightDir ) ,
nDotV = dot( normal , camDir );
if ( nDotL < 0 || nDotV < 0 ) {
return vec3( 0 );
}
vec3 tangent = cross( vec3( 0 , 1 , 0 ) , normal );
if ( length( tangent ) == 0 ) {
tangent = cross( vec3( 1 , 0 , 0 ) , normal );
}
tangent = normalize( tangent );
vec3 bitangent = normalize( cross( normal , tangent ) );
vec3 halfVec = normalize( lightDir + camDir ) ,
tint = M_NormalizeColor( material.cAlbedo ) ,
cSpecular = mix( material.specular * .08 * mix(
vec3( 1 ) , tint , material.specularTint ) ,
material.cAlbedo , material.metallic );
//vec3 Csheen = mix(vec3(1), Ctint, sheenTint);
float nDotH = dot( normal , halfVec ) ,
lDotH = dot( lightDir , halfVec ) ,
// Diffuse fresnel - go from 1 at normal incidence to .5 at grazing
// and mix in diffuse retro-reflection based on roughness
FL = PBR_SchlickFresnel( nDotL ) ,
FV = PBR_SchlickFresnel( nDotV ) ,
Fd90 = 0.5 + 2 * lDotH * lDotH * material.roughness ,
Fd = mix( 1 , Fd90 , FL ) * mix( 1 , Fd90 , FV ) ,
// Based on Hanrahan-Krueger brdf approximation of isotropic bssrdf
// 1.25 scale is used to (roughly) preserve albedo
// Fss90 used to "flatten" retroreflection based on roughness
Fss90 = lDotH * lDotH * material.roughness ,
Fss = mix( 1 , Fss90 , FL ) * mix( 1 , Fss90 , FV ) ,
ss = 1.25 * ( Fss * ( 1 / ( nDotL + nDotV ) - .5 ) + .5 ) ,
// Specular
aspect = sqrt( 1 - material.anisotropy * .9 ) ,
rsqr = material.roughness * material.roughness ,
ax = max( .001, rsqr / aspect ) ,
ay = max( .001, rsqr * aspect ) ,
Ds = PBR_GTR2Aniso( nDotH , dot( halfVec , tangent ) ,
dot( halfVec , bitangent ) , ax , ay ) ,
FH = PBR_SchlickFresnel( lDotH ) ,
Gs = PBR_SmithGGXAniso( nDotL , dot( lightDir , tangent ) ,
dot( lightDir , bitangent ) , ax , ay )
* PBR_SmithGGXAniso( nDotV , dot( camDir , tangent ) ,
dot( camDir , bitangent ) , ax , ay );
vec3 Fs = mix( cSpecular , vec3(1) , FH );
return nDotL * ( ( ( 1 / PI )
* mix( Fd , ss , material.subsurface )
* material.cAlbedo /* + Fsheen */)
* pow( 1 - material.metallic , 3 )
+ clamp( Gs , 0 , 1 ) * Fs * Ds );
}

View file

@ -1,11 +1,30 @@
//! type library
const float PI = 3.14159265;
// -----------------------------------------------------------------------------
float M_Hash( in vec2 p )
float M_Hash(
in vec2 p )
{
p = fract(p * vec2(5.3987, 5.4421));
p += dot(p.yx, p.xy + vec2(21.5351, 14.3137));
return fract(p.x * p.y * 95.4307);
}
// -----------------------------------------------------------------------------
float M_Luminosity(
in vec3 color )
{
return dot( color , vec3( .3 , .6 , .1 ) );
}
vec3 M_NormalizeColor(
in vec3 color )
{
const float l = M_Luminosity( color );
return l > 0 ? ( color / l ) : vec3( 1 );
}

View file

@ -1,54 +0,0 @@
#define USE_GLOW
#define USE_MAP_MATERIAL
T_BPMaterial BPMaterials[1] = {
{ vec3( 1 , 1 , .4 ) * .1 , vec3( 1 , 1 , .4 ) , 40 , .1 }
};
T_PBRMaterialOld PBRMaterialsOld[1] = {
{
// Albedo / specular colors
vec3( 1 , 1 , 0 ) , vec3( 1 , 1 , .4 ) * .1 ,
// Roughness , anisotropy , subsurface , metallic
.8 , .8 , .1 , .9
}
};
T_PBRMaterial PBRMaterials[1] = {
{
// Albedo color
vec3( 1 , 1 , .4 ) ,
// Roughness , metallic , subsurface , anisotropy
.4 , .7 , 1 , .1 ,
// Specular strength / tint%
.5 , .5
}
};
vec3 Glow[1] = {
vec3( 2 , .4 , 5 ) * 4
};
void mapMaterial(
in int matIndex ,
out int type ,
out int tIndex ,
out int glowIndex )
{
if ( matIndex == 0 ) {
glowIndex = -1;
} else {
//type = 1;
glowIndex = 0;
}
type = 1;
tIndex = 0;
}
vec2 map( vec3 pos )
{
pos = pos - vec3( 0 , 0 , 0 );
vec3 q = pos;
q.xy = mod( q.xy + 4. , 8. ) - 4.;
return vec2( length( q ) - 1.8 , step( 0. , 1.9 - length( pos.xy ) ) );
}

View file

@ -1,255 +0,0 @@
//! type library
struct T_PBRMaterialOld
{
vec3 cAlbedo, cSpecular;
float roughness , anisotropy , subsurface , metallic;
};
struct T_PBRPrecomputedOld
{
float nDotC;
float ffndc; // Fresnel from n.c
vec3 tangent, bitangent;
float specAlpha , viewSpecular;
float aAspectX , aAspectY; // Anisotropy
};
float PBR_FresnelFromOld( in float dotProduct ) {
float d = clamp( 1.0 - dotProduct , 0 , 1 ) , d2 = d * d;
return d2 * d2 * d;
}
float PBR_GetSpecularOld( in float cosine , in float alpha )
{
float cs = cosine * cosine;
float as = alpha * alpha;
return clamp( 1. / ( cosine + sqrt( cs + as - cs * as ) ) , 0 , 1 );
}
// Precompute some of the material's properties. This is independant of the
// light source.
T_PBRPrecomputedOld PBR_PrecomputeOld(
in T_PBRMaterialOld material ,
in vec3 rayDir ,
in vec3 normal )
{
T_PBRPrecomputedOld rv;
rv.nDotC = dot( normal , rayDir );
rv.ffndc = PBR_FresnelFromOld( rv.nDotC );
rv.tangent = cross( vec3( 0. , 1. , 0. ) , normal );
if ( length( rv.tangent ) == 0.0 ) {
rv.tangent = cross( vec3( 1. , 0. , 0. ) , normal );
}
rv.tangent = normalize( rv.tangent );
rv.bitangent = normalize( cross( normal , rv.tangent ) );
rv.specAlpha = pow( material.roughness * .5 + .5 , 2. );
rv.viewSpecular = PBR_GetSpecularOld( rv.nDotC , rv.specAlpha );
const float sRoughness = material.roughness * material.roughness;
const float aspect = sqrt( 1.0 - material.anisotropy * .9 );
rv.aAspectX = max( .001, sRoughness / aspect );
rv.aAspectY = max( .001, sRoughness * aspect );
return rv;
}
// Actually compute a light source's contribution
vec3 PBR_ShadeOld(
in T_PBRMaterialOld material ,
in T_PBRPrecomputedOld precomputed ,
in vec3 rayDir ,
in vec3 normal ,
in vec3 lightDir )
{
const float nDotL = dot( normal , lightDir );
if ( nDotL <= 0. ) {
return vec3( 0. );
}
// FIXME: should be in common part
float lSpecular = dot( material.cSpecular , vec3( .3 , .6 , .1 ) );
vec3 cSpecular = lSpecular > 0 ? ( material.cSpecular / lSpecular ) : vec3( 1 );
const vec3 halfVec = normalize( lightDir + rayDir );
const float nDotH = dot( normal , halfVec );
const float lDotH = dot( lightDir , halfVec );
const float ffndl = PBR_FresnelFromOld( nDotL );
float grazingDiffuse = lDotH * lDotH * material.roughness;
float dSubsurface = mix( 1.0 , grazingDiffuse , ffndl )
* mix( 1.0 , grazingDiffuse , precomputed.ffndc );
dSubsurface = 1.25 * ( dSubsurface * ( 1.0 / ( nDotL + precomputed.nDotC ) - .5 ) + .5 );
grazingDiffuse = .5 + 2. * grazingDiffuse;
const float dFresnel = mix( 1.0 , grazingDiffuse , ffndl )
* mix( 1.0 , grazingDiffuse , precomputed.ffndc );
float specular = PBR_GetSpecularOld( nDotL , precomputed.specAlpha )
* precomputed.viewSpecular;
specular = mix( specular , 1.0 , PBR_FresnelFromOld( lDotH ) );
const vec3 d = vec3(
dot( halfVec , precomputed.tangent ) / precomputed.aAspectX ,
dot( halfVec , precomputed.bitangent ) / precomputed.aAspectY ,
nDotH );
const float ds = dot( d , d );
const float anisotropic = precomputed.aAspectX * precomputed.aAspectY
* ds * ds * 3.14159265;
return nDotL * ( material.cAlbedo
* mix( dFresnel , dSubsurface , material.subsurface )
* pow( 1.0 - material.metallic , 3 )
+ specular * cSpecular / anisotropic
);
}
// YAY let's do it again!
const float PI = 3.14159265;
float PBR_SchlickFresnel( in float u )
{
const float m = clamp( 1 - u , 0 , 1 ) ,
m2 = m * m;
return m2 * m2 * m;
}
float PBR_GTR1( in float nDotH , in float a )
{
if (a >= 1) {
return 1/PI;
}
float a2 = a * a ,
t = 1 + ( a2 - 1 ) * nDotH * nDotH;
return ( a2 - 1 ) / ( PI * log( a2 ) * t );
}
float PBR_GTR2( in float nDotH , in float a )
{
float a2 = a * a ,
t = 1 + ( a2 - 1 ) * nDotH * nDotH;
return a2 / ( PI * t * t );
}
float PBR_GTR2Aniso( in float nDotH ,
in float hDotX ,
in float hDotY ,
in float ax ,
in float ay )
{
float x = hDotX / ax , y = hDotY / ay ,
p = x * x + y * y + nDotH * nDotH;
return 1 / ( PI * ax * ay * p * p );
}
float PBR_SmithGGX( in float nDotV , in float alpha )
{
float a = alpha * alpha , b = nDotV * nDotV;
return 1 / ( nDotV + sqrt( a + b - a * b ) );
}
float PBR_SmithGGXAniso( in float nDotV ,
in float vDotX ,
in float vDotY ,
in float ax ,
in float ay )
{
float x = vDotX * ax , y = vDotY * ay;
return 1 / ( nDotV + sqrt( x * x + y * y + nDotV * nDotV ) );
}
vec3 NormalizeColor( in vec3 color )
{
float l = dot( color , vec3( .3 , .6 , .1 ) );
return l > 0 ? ( color / l ) : vec3( 1 );
}
struct T_PBRMaterial
{
vec3 cAlbedo;
float roughness;
float metallic;
float subsurface;
float anisotropy;
float specular; // Specular strengh for non-metals
float specularTint; // Albedo color% in specular tint (non-metals)
};
vec3 PBR_Shade( in T_PBRMaterial material ,
in vec3 camDir ,
in vec3 normal ,
in vec3 lightDir )
{
float nDotL = dot( normal , lightDir ) ,
nDotV = dot( normal , camDir );
if ( nDotL < 0 || nDotV < 0 ) {
return vec3( 0 );
}
vec3 tangent = cross( vec3( 0 , 1 , 0 ) , normal );
if ( length( tangent ) == 0 ) {
tangent = cross( vec3( 1 , 0 , 0 ) , normal );
}
tangent = normalize( tangent );
vec3 bitangent = normalize( cross( normal , tangent ) );
vec3 halfVec = normalize( lightDir + camDir ) ,
tint = NormalizeColor( material.cAlbedo ) ,
cSpecular = mix( material.specular * .08 * mix(
vec3( 1 ) , tint , material.specularTint ) ,
material.cAlbedo , material.metallic );
//vec3 Csheen = mix(vec3(1), Ctint, sheenTint);
float nDotH = dot( normal , halfVec ) ,
lDotH = dot( lightDir , halfVec ) ,
// Diffuse fresnel - go from 1 at normal incidence to .5 at grazing
// and mix in diffuse retro-reflection based on roughness
FL = PBR_SchlickFresnel( nDotL ) ,
FV = PBR_SchlickFresnel( nDotV ) ,
Fd90 = 0.5 + 2 * lDotH * lDotH * material.roughness ,
Fd = mix( 1 , Fd90 , FL ) * mix( 1 , Fd90 , FV ) ,
// Based on Hanrahan-Krueger brdf approximation of isotropic bssrdf
// 1.25 scale is used to (roughly) preserve albedo
// Fss90 used to "flatten" retroreflection based on roughness
Fss90 = lDotH * lDotH * material.roughness ,
Fss = mix( 1 , Fss90 , FL ) * mix( 1 , Fss90 , FV ) ,
ss = 1.25 * ( Fss * ( 1 / ( nDotL + nDotV ) - .5 ) + .5 ) ,
// Specular
aspect = sqrt( 1 - material.anisotropy * .9 ) ,
rsqr = material.roughness * material.roughness ,
ax = max( .001, rsqr / aspect ) ,
ay = max( .001, rsqr * aspect ) ,
Ds = PBR_GTR2Aniso( nDotH , dot( halfVec , tangent ) ,
dot( halfVec , bitangent ) , ax , ay ) ,
FH = PBR_SchlickFresnel( lDotH ) ,
Gs = PBR_SmithGGXAniso( nDotL , dot( lightDir , tangent ) ,
dot( lightDir , bitangent ) , ax , ay )
* PBR_SmithGGXAniso( nDotV , dot( camDir , tangent ) ,
dot( camDir , bitangent ) , ax , ay );
// sheen
//vec3 Fsheen = FH * sheen * Csheen;
// clearcoat (ior = 1.5 -> F0 = 0.04)
/*
float Dr = PBR_GTR1( nDotH , mix( .1 , .001 , clearcoatGloss));
float Fr = mix(.04, 1.0, FH);
float Gr = smithG_GGX(NdotL, .25) * smithG_GGX(NdotV, .25);
*/
vec3 Fs = mix( cSpecular , vec3(1) , FH );
return nDotL * ( ( ( 1 / PI )
* mix( Fd , ss , material.subsurface )
* material.cAlbedo /* + Fsheen */)
* pow( 1 - material.metallic , 3 )
+ clamp( Gs , 0 , 1 ) * Fs * Ds );
//+ .25*clearcoat*Gr*Fr*Dr;
}

View file

@ -1,145 +0,0 @@
vec3 getNormal( vec3 pos )
{
vec2 v = vec2( .0005 , 0 );
return normalize( vec3(
map( pos + v.xyy ).x - map( pos - v.xyy ).x ,
map( pos + v.yxy ).x - map( pos - v.yxy ).x ,
map( pos + v.yyx ).x - map( pos - v.yyx ).x ) );
}
// -----------------------------------------------------------------------------
vec3 RM_Basic( vec3 o , vec3 d , int steps , float factor )
{
int i = 0;
float dist = .01 , mat = -1;
for ( ; i < steps ; ++ i ) {
vec2 res = map( o + d * dist );
if ( abs( res.x ) < u_Render.z || dist > u_Render.w ) {
break;
}
dist += res.x * factor;
mat = res.y;
}
return vec3( dist , dist >= u_Render.w ? -1 : mat , i );
}
vec3 RM_Advanced( vec3 o , vec3 d , int steps , float factor )
{
const float dMin = .1 , dMax = u_Render.w , pixel = u_Render.z;
int i = 0;
float dist = dMin , mat = -1;
float omega = factor;
float cError = 1 / 0. , cDist = dMin;
float pRad = 0 , sLen = 0;
for ( ; i < steps ; ++ i ) {
vec2 res = map( o + d * dist );
float rad = abs( res.x );
bool sorFail = omega > 1 && ( rad + pRad ) < sLen;
if ( sorFail ) {
sLen -= omega * sLen;
omega = 1;
} else {
sLen = res.x * omega;
}
pRad = rad;
float error = rad / dist;
if ( !sorFail && error < cError ) {
cError = error;
cDist = dist;
}
if ( !sorFail && error < pixel || dist > dMax ) {
break;
}
dist += sLen;
}
if ( dist <= dMax && cError <= pixel ) {
return vec3( cDist , map( o + d * cDist ).y , i );
}
return vec3( cDist , -1 , steps );
}
// -----------------------------------------------------------------------------
void main( )
{
setCamFromUniforms( );
vec2 uv = ( gl_FragCoord.xy / u_Resolution ) * 2 - 1;
vec3 camDir = normalize( lookAt - camPos );
vec3 side = normalize( cross( camUp , camDir ) );
vec3 up = normalize( cross( camDir , side ) );
vec3 rayDir = normalize( camDir * nearPlane
+ uv.x * side * u_Resolution.x / u_Resolution.y
+ uv.y * up );
vec3 r = RM_Advanced( camPos , rayDir , int( u_Render.x ) , u_Render.y );
vec3 hitPos = camPos + rayDir * r.x;
vec3 bc = vec3( 0 );
if ( r.y >= 0. ) {
const int midx = int( r.y );
const vec3 normal = getNormal( hitPos );
const vec3 lightDir = normalize( -u_LightDir );
#if defined( USE_BP )
// Blinn-Phong only
bc = BP_Shade( BPMaterials[ midx ] ,
rayDir , normal , lightDir );
#else
#if defined( USE_PBR )
// PBR only
T_PBRMaterialOld material = PBRMaterialsOld[ midx ];
T_PBRPrecomputedOld precomputed = PBR_PrecomputeOld(
material , rayDir , normal );
bc = PBR_ShadeOld( material , precomputed ,
-rayDir , normal , lightDir );
#else
#if defined( USE_MAP_MATERIAL )
// Remap materials through mapMaterials
int mtype , mtidx , glowidx;
mapMaterial( midx , mtype , mtidx , glowidx );
if ( mtype == 0 ) {
bc = BP_Shade( BPMaterials[ mtidx ] ,
-rayDir , normal , lightDir );
} else {
#if 0
T_PBRMaterialOld material = PBRMaterialsOld[ mtidx ];
T_PBRPrecomputedOld precomputed = PBR_PrecomputeOld(
material , rayDir , normal );
bc = PBR_ShadeOld( material , precomputed ,
rayDir , normal , lightDir );
#else
bc = PBR_Shade( PBRMaterials[ mtidx ] ,
-rayDir , normal , lightDir );
#endif
}
#if defined( USE_GLOW )
if ( glowidx >= 0 ) {
bc += Glow[ glowidx ];
}
#endif
#endif
#endif
#endif
#ifdef USE_GLOW
#ifndef USE_MAP_MATERIAL
bc += Glow[ midx ];
#endif
#endif
}
o_Color = bc;
o_Z = r.x;
}

View file

@ -1,7 +1,92 @@
#version 450 core
//! type fragment
//! include raymarch-header.glsl
//! include pbr.glsl
//! include blinn-phong.glsl
//! include map.glsl
//! include raymarcher.glsl
//! include chunks/raymarcher.glsl
//! include lib/shading-pbr.glsl
//! include lib/shading-blinnphong.glsl
T_BPMaterial BPMaterials[1] = {
{ vec3( 1 , 1 , .4 ) * .1 , vec3( 1 , 1 , .4 ) , 40 , .1 }
};
T_PBRMaterial PBRMaterials[1] = {
{
// Albedo color
vec3( 1 , 1 , .4 ) ,
// Roughness , metallic , subsurface , anisotropy
.4 , .7 , 1 , .1 ,
// Specular strength / tint%
.5 , .5
}
};
vec3 Glow[1] = {
vec3( 2 , .4 , 5 ) * 4
};
void mapMaterial(
in int matIndex ,
out int type ,
out int tIndex ,
out int glowIndex )
{
if ( matIndex == 0 ) {
glowIndex = -1;
} else {
//type = 1;
glowIndex = 0;
}
type = 1;
tIndex = 0;
}
vec2 RM_Map( vec3 pos )
{
pos = pos - vec3( 0 , 0 , 0 );
vec3 q = pos;
q.xy = mod( q.xy + 4. , 8. ) - 4.;
return vec2( length( q ) - 1.8 , step( 0. , 1.9 - length( pos.xy ) ) );
}
void main( )
{
vec2 uv = ( gl_FragCoord.xy / u_Resolution ) * 2 - 1;
vec3 camDir = normalize( u_LookAt - u_CamPos );
vec3 side = normalize( cross( u_CamUp , camDir ) );
vec3 up = normalize( cross( camDir , side ) );
vec3 rayDir = normalize( camDir * u_NearPlane
+ uv.x * side * u_Resolution.x / u_Resolution.y
+ uv.y * up );
vec3 r = RM_Advanced( u_CamPos , rayDir ,
int( u_Render.x ) , u_Render.y ,
u_Render.z , .001 , u_Render.w );
vec3 hitPos = u_CamPos + rayDir * r.x;
vec3 bc = vec3( 0 );
if ( r.y >= 0. ) {
const int midx = int( r.y );
const vec3 normal = RM_GetNormal( hitPos );
const vec3 lightDir = normalize( -u_LightDir );
// Remap materials through mapMaterials
int mtype , mtidx , glowidx;
mapMaterial( midx , mtype , mtidx , glowidx );
if ( mtype == 0 ) {
bc = BP_Shade( BPMaterials[ mtidx ] ,
-rayDir , normal , lightDir );
} else {
bc = PBR_Shade( PBRMaterials[ mtidx ] ,
-rayDir , normal , lightDir );
}
if ( glowidx >= 0 ) {
bc += Glow[ glowidx ];
}
}
o_Color = bc;
o_Z = r.x;
}