diff --git a/shaders/lib/hg_sdf.glsl b/shaders/lib/hg_sdf.glsl new file mode 100644 index 0000000..a9285c0 --- /dev/null +++ b/shaders/lib/hg_sdf.glsl @@ -0,0 +1,724 @@ +//////////////////////////////////////////////////////////////// +// +// HG_SDF +// +// GLSL LIBRARY FOR BUILDING SIGNED DISTANCE BOUNDS +// +// version 2016-01-10 +// +// Check http://mercury.sexy/hg_sdf for updates +// and usage examples. Send feedback to spheretracing@mercury.sexy. +// +// Brought to you by MERCURY http://mercury.sexy +// +// +// +// Released as Creative Commons Attribution-NonCommercial (CC BY-NC) +// +//////////////////////////////////////////////////////////////// +// +// How to use this: +// +// 1. Build some system to #include glsl files in each other. +// Include this one at the very start. Or just paste everywhere. +// 2. Build a sphere tracer. See those papers: +// * "Sphere Tracing" http://graphics.cs.illinois.edu/sites/default/files/zeno.pdf +// * "Enhanced Sphere Tracing" http://lgdv.cs.fau.de/get/2234 +// The Raymnarching Toolbox Thread on pouet can be helpful as well +// http://www.pouet.net/topic.php?which=7931&page=1 +// and contains links to many more resources. +// 3. Use the tools in this library to build your distance bound f(). +// 4. ??? +// 5. Win a compo. +// +// (6. Buy us a beer or a good vodka or something, if you like.) +// +//////////////////////////////////////////////////////////////// +// +// Table of Contents: +// +// * Helper functions and macros +// * Collection of some primitive objects +// * Domain Manipulation operators +// * Object combination operators +// +//////////////////////////////////////////////////////////////// +// +// Why use this? +// +// The point of this lib is that everything is structured according +// to patterns that we ended up using when building geometry. +// It makes it more easy to write code that is reusable and that somebody +// else can actually understand. Especially code on Shadertoy (which seems +// to be what everybody else is looking at for "inspiration") tends to be +// really ugly. So we were forced to do something about the situation and +// release this lib ;) +// +// Everything in here can probably be done in some better way. +// Please experiment. We'd love some feedback, especially if you +// use it in a scene production. +// +// The main patterns for building geometry this way are: +// * Stay Lipschitz continuous. That means: don't have any distance +// gradient larger than 1. Try to be as close to 1 as possible - +// Distances are euclidean distances, don't fudge around. +// Underestimating distances will happen. That's why calling +// it a "distance bound" is more correct. Don't ever multiply +// distances by some value to "fix" a Lipschitz continuity +// violation. The invariant is: each fSomething() function returns +// a correct distance bound. +// * Use very few primitives and combine them as building blocks +// using combine opertors that preserve the invariant. +// * Multiply objects by repeating the domain (space). +// If you are using a loop inside your distance function, you are +// probably doing it wrong (or you are building boring fractals). +// * At right-angle intersections between objects, build a new local +// coordinate system from the two distances to combine them in +// interesting ways. +// * As usual, there are always times when it is best to not follow +// specific patterns. +// +//////////////////////////////////////////////////////////////// +// +// FAQ +// +// Q: Why is there no sphere tracing code in this lib? +// A: Because our system is way too complex and always changing. +// This is the constant part. Also we'd like everyone to +// explore for themselves. +// +// Q: This does not work when I paste it into Shadertoy!!!! +// A: Yes. It is GLSL, not GLSL ES. We like real OpenGL +// because it has way more features and is more likely +// to work compared to browser-based WebGL. We recommend +// you consider using OpenGL for your productions. Most +// of this can be ported easily though. +// +// Q: How do I material? +// A: We recommend something like this: +// Write a material ID, the distance and the local coordinate +// p into some global variables whenever an object's distance is +// smaller than the stored distance. Then, at the end, evaluate +// the material to get color, roughness, etc., and do the shading. +// +// Q: I found an error. Or I made some function that would fit in +// in this lib. Or I have some suggestion. +// A: Awesome! Drop us a mail at spheretracing@mercury.sexy. +// +// Q: Why is this not on github? +// A: Because we were too lazy. If we get bugged about it enough, +// we'll do it. +// +// Q: Your license sucks for me. +// A: Oh. What should we change it to? +// +// Q: I have trouble understanding what is going on with my distances. +// A: Some visualization of the distance field helps. Try drawing a +// plane that you can sweep through your scene with some color +// representation of the distance field at each point and/or iso +// lines at regular intervals. Visualizing the length of the +// gradient (or better: how much it deviates from being equal to 1) +// is immensely helpful for understanding which parts of the +// distance field are broken. +// +//////////////////////////////////////////////////////////////// + + + +//! type library +//! include lib/utils.glsl + + + + +//////////////////////////////////////////////////////////////// +// +// PRIMITIVE DISTANCE FUNCTIONS +// +//////////////////////////////////////////////////////////////// +// +// Conventions: +// +// Everything that is a distance function is called fSomething. +// The first argument is always a point in 2 or 3-space called
.
+// Unless otherwise noted, (if the object has an intrinsic "up"
+// side or direction) the y axis is "up" and the object is
+// centered at the origin.
+//
+////////////////////////////////////////////////////////////////
+
+float HG_fSphere(vec3 p, float r) {
+ return length(p) - r;
+}
+
+// Plane with normal n (n is normalized) at some distance from the origin
+float HG_fPlane(vec3 p, vec3 n, float distanceFromOrigin) {
+ return dot(p, n) + distanceFromOrigin;
+}
+
+// Cheap Box: distance to corners is overestimated
+float HG_fBoxCheap(vec3 p, vec3 b) { //cheap box
+ return M_VecMax(abs(p) - b);
+}
+
+// Box: correct distance to corners
+float HG_fBox(vec3 p, vec3 b) {
+ vec3 d = abs(p) - b;
+ return length(max(d, vec3(0))) + M_VecMax(min(d, vec3(0)));
+}
+
+// Same as above, but in two dimensions (an endless box)
+float HG_fBox2Cheap(vec2 p, vec2 b) {
+ return M_VecMax(abs(p)-b);
+}
+
+float HG_fBox2(vec2 p, vec2 b) {
+ vec2 d = abs(p) - b;
+ return length(max(d, vec2(0))) + M_VecMax(min(d, vec2(0)));
+}
+
+
+// Endless "corner"
+float HG_fCorner (vec2 p) {
+ return length(max(p, vec2(0))) + M_VecMax(min(p, vec2(0)));
+}
+
+// Blobby ball object. You've probably seen it somewhere. This is not a correct distance bound, beware.
+float HG_fBlob(vec3 p) {
+ p = abs(p);
+ if (p.x < max(p.y, p.z)) p = p.yzx;
+ if (p.x < max(p.y, p.z)) p = p.yzx;
+ float b = max(max(max(
+ dot(p, normalize(vec3(1, 1, 1))),
+ dot(p.xz, normalize(vec2(PHI+1, 1)))),
+ dot(p.yx, normalize(vec2(1, PHI)))),
+ dot(p.xz, normalize(vec2(1, PHI))));
+ float l = length(p);
+ return l - 1.5 - 0.2 * (1.5 / 2)* cos(min(sqrt(1.01 - b / l)*(PI / 0.25), PI));
+}
+
+// Cylinder standing upright on the xz plane
+float HG_fCylinder(vec3 p, float r, float height) {
+ float d = length(p.xz) - r;
+ d = max(d, abs(p.y) - height);
+ return d;
+}
+
+// Capsule: A Cylinder with round caps on both sides
+float HG_fCapsule(vec3 p, float r, float c) {
+ return mix(length(p.xz) - r, length(vec3(p.x, abs(p.y) - c, p.z)) - r, step(c, abs(p.y)));
+}
+
+// Distance to line segment between and , used for fCapsule() version 2below
+float HG_fLineSegment(vec3 p, vec3 a, vec3 b) {
+ vec3 ab = b - a;
+ float t = M_Saturate(dot(p - a, ab) / dot(ab, ab));
+ return length((ab*t + a) - p);
+}
+
+// Capsule version 2: between two end points and with radius r
+float HG_fCapsule(vec3 p, vec3 a, vec3 b, float r) {
+ return HG_fLineSegment(p, a, b) - r;
+}
+
+// Torus in the XZ-plane
+float HG_fTorus(vec3 p, float smallRadius, float largeRadius) {
+ return length(vec2(length(p.xz) - largeRadius, p.y)) - smallRadius;
+}
+
+// A circle line. Can also be used to make a torus by subtracting the smaller radius of the torus.
+float HG_fCircle(vec3 p, float r) {
+ float l = length(p.xz) - r;
+ return length(vec2(p.y, l));
+}
+
+// A circular disc with no thickness (i.e. a cylinder with no height).
+// Subtract some value to make a flat disc with rounded edge.
+float HG_fDisc(vec3 p, float r) {
+ float l = length(p.xz) - r;
+ return l < 0 ? abs(p.y) : length(vec2(p.y, l));
+}
+
+// Hexagonal prism, circumcircle variant
+float HG_fHexagonCircumcircle(vec3 p, vec2 h) {
+ vec3 q = abs(p);
+ return max(q.y - h.y, max(q.x*sqrt(3)*0.5 + q.z*0.5, q.z) - h.x);
+ //this is mathematically equivalent to this line, but less efficient:
+ //return max(q.y - h.y, max(dot(vec2(cos(PI/3), sin(PI/3)), q.zx), q.z) - h.x);
+}
+
+// Hexagonal prism, incircle variant
+float HG_fHexagonIncircle(vec3 p, vec2 h) {
+ return HG_fHexagonCircumcircle(p, vec2(h.x*sqrt(3)*0.5, h.y));
+}
+
+// Cone with correct distances to tip and base circle. Y is up, 0 is in the middle of the base.
+float HG_fCone(vec3 p, float radius, float height) {
+ vec2 q = vec2(length(p.xz), p.y);
+ vec2 tip = q - vec2(0, height);
+ vec2 mantleDir = normalize(vec2(height, radius));
+ float mantle = dot(tip, mantleDir);
+ float d = max(mantle, -q.y);
+ float projected = dot(tip, vec2(mantleDir.y, -mantleDir.x));
+
+ // distance to tip
+ if ((q.y > height) && (projected < 0)) {
+ d = max(d, length(tip));
+ }
+
+ // distance to base ring
+ if ((q.x > radius) && (projected > length(vec2(height, radius)))) {
+ d = max(d, length(q - vec2(radius, 0)));
+ }
+ return d;
+}
+
+//
+// "Generalized Distance Functions" by Akleman and Chen.
+// see the Paper at https://www.viz.tamu.edu/faculty/ergun/research/implicitmodeling/papers/sm99.pdf
+//
+// This set of constants is used to construct a large variety of geometric primitives.
+// Indices are shifted by 1 compared to the paper because we start counting at Zero.
+// Some of those are slow whenever a driver decides to not unroll the loop,
+// which seems to happen for fIcosahedron und fTruncatedIcosahedron on nvidia 350.12 at least.
+// Specialized implementations can well be faster in all cases.
+//
+
+const vec3 HG_GDFVectors[19] = vec3[](
+ normalize(vec3(1, 0, 0)),
+ normalize(vec3(0, 1, 0)),
+ normalize(vec3(0, 0, 1)),
+
+ normalize(vec3(1, 1, 1 )),
+ normalize(vec3(-1, 1, 1)),
+ normalize(vec3(1, -1, 1)),
+ normalize(vec3(1, 1, -1)),
+
+ normalize(vec3(0, 1, PHI+1)),
+ normalize(vec3(0, -1, PHI+1)),
+ normalize(vec3(PHI+1, 0, 1)),
+ normalize(vec3(-PHI-1, 0, 1)),
+ normalize(vec3(1, PHI+1, 0)),
+ normalize(vec3(-1, PHI+1, 0)),
+
+ normalize(vec3(0, PHI, 1)),
+ normalize(vec3(0, -PHI, 1)),
+ normalize(vec3(1, 0, PHI)),
+ normalize(vec3(-1, 0, PHI)),
+ normalize(vec3(PHI, 1, 0)),
+ normalize(vec3(-PHI, 1, 0))
+);
+
+// Version with variable exponent.
+// This is slow and does not produce correct distances, but allows for bulging of objects.
+float HG_fGDF(vec3 p, float r, float e, int begin, int end) {
+ float d = 0;
+ for (int i = begin; i <= end; ++i)
+ d += pow(abs(dot(p, HG_GDFVectors[i])), e);
+ return pow(d, 1/e) - r;
+}
+
+// Version with without exponent, creates objects with sharp edges and flat faces
+float HG_fGDF(vec3 p, float r, int begin, int end) {
+ float d = 0;
+ for (int i = begin; i <= end; ++i)
+ d = max(d, abs(dot(p, HG_GDFVectors[i])));
+ return d - r;
+}
+
+// Primitives follow:
+
+float HG_fOctahedron(vec3 p, float r, float e) {
+ return HG_fGDF(p, r, e, 3, 6);
+}
+
+float HG_fDodecahedron(vec3 p, float r, float e) {
+ return HG_fGDF(p, r, e, 13, 18);
+}
+
+float HG_fIcosahedron(vec3 p, float r, float e) {
+ return HG_fGDF(p, r, e, 3, 12);
+}
+
+float HG_fTruncatedOctahedron(vec3 p, float r, float e) {
+ return HG_fGDF(p, r, e, 0, 6);
+}
+
+float HG_fTruncatedIcosahedron(vec3 p, float r, float e) {
+ return HG_fGDF(p, r, e, 3, 18);
+}
+
+float HG_fOctahedron(vec3 p, float r) {
+ return HG_fGDF(p, r, 3, 6);
+}
+
+float HG_fDodecahedron(vec3 p, float r) {
+ return HG_fGDF(p, r, 13, 18);
+}
+
+float HG_fIcosahedron(vec3 p, float r) {
+ return HG_fGDF(p, r, 3, 12);
+}
+
+float HG_fTruncatedOctahedron(vec3 p, float r) {
+ return HG_fGDF(p, r, 0, 6);
+}
+
+float HG_fTruncatedIcosahedron(vec3 p, float r) {
+ return HG_fGDF(p, r, 3, 18);
+}
+
+
+////////////////////////////////////////////////////////////////
+//
+// DOMAIN MANIPULATION OPERATORS
+//
+////////////////////////////////////////////////////////////////
+//
+// Conventions:
+//
+// Everything that modifies the domain is named pSomething.
+//
+// Many operate only on a subset of the three dimensions. For those,
+// you must choose the dimensions that you want manipulated
+// by supplying e.g. is unchanged and cells
+// are centered on the origin so objects don't have to be moved to fit.
+//
+//
+////////////////////////////////////////////////////////////////
+
+
+
+// Rotate around a coordinate axis (i.e. in a plane perpendicular to that axis) by angle .
+// Read like this: R(p.xz, a) rotates "x towards z".
+// This is fast if is a compile-time constant and slower (but still practical) if not.
+void HG_pR(inout vec2 p, float a) {
+ p = cos(a)*p + sin(a)*vec2(p.y, -p.x);
+}
+
+// Shortcut for 45-degrees rotation
+void HG_pR45(inout vec2 p) {
+ p = (p + vec2(p.y, -p.x))*sqrt(0.5);
+}
+
+// Repeat space along one axis. Use like this to repeat along the x axis:
+//